Разработка устройства защиты телефонной линии от прослушивания

Автор работы: Пользователь скрыл имя, 11 Февраля 2012 в 13:05, дипломная работа

Краткое описание

Естественно, вначале этот опыт носил в основном военный характер, но затем он нашел благодатную почву для “мирной” реализации на ниве промышленного шпионажа. Одним из основных способов ведения разведывательных действий является получение доступа к каналам передачи информации, которыми пользуется конкурирующая сторона. В первую очередь, как правило, нападению подвергаются каналы телефонной связи, по которым, кроме речевой информации, передаются факсимильные, модемные сообщения.

Содержание работы

Введение 3
1. Теоретические основы защиты информации в
проводных системах связи (системах связи). Аналитический 6
обзор состояния дел.
2. Разработка, обоснование и расчет структурной 19
схемы устройства
2.1. Разработка требований к проектируемому 19
устройству
2.2. Анализ возможных вариантов построения устройства 39
2.3 Выбор, расчет и технико-экономическое обоснование 41
структурной схемы устройства
3. Разработка, расчет высокочастотного фильтра устройства 43
4. Экспериментальные результаты моделирования расчетного 53
элемента устройства
Заключение 54
Список использованных источников

Содержимое работы - 1 файл

бакалаврская работа 1.doc

— 1.16 Мб (Скачать файл)

     

     

     

       

                                                                                       ТЛФ абонента

              АТС 

     Рис. 2.1 – схема телефонной линии

     Существуют  четыре основных критерия, по которым  оцениваются характеристики устройств закрытия речевых сигналов, а именно: разборчивость речи, узнаваемость говорящего, степень закрытия и основные технические характеристики системы.

     Приемлемым  или коммерческим качеством восстановленной  на приемном конце речи считается такое, когда слушатель может без труда определить голос говорящего и смысл произносимого сообщения. Помимо этого, под хорошим качеством передаваемого речевого сигнала подразумевается и возможность воспроизведения эмоциональных оттенков и других специфических эффектов разговора, присущих беседам tet-a-tet.

     Влияющие  на качество восстановленного речевого сигнала параметры узкополосных закрытых систем передачи речи определяются способами кодирования, методами модуляции, воздействием шума, инструментальными ошибками и условиями распространения.

       Шумы и искажения воздействуют  на характеристики каждой компоненты системы по-разному, и снижение качества, ощущаемое пользователем, происходит от суммарно эффекта понижения характеристик отдельных компонента.

     Существующие  объективные методы оценки качества речи и систем не применимы для  сравнения характеристик узкополосных дискретных систем связи, в которых  речевой сигнал преобразуется в систему параметров на передающей стороне, передается по каналу связи, а затем синтезируются в речевой сигнал в приемнике.

     Существующие  субъективные методы измерений разборчивости  и естественности отличаются значительной трудоемкостью, поскольку в этом деле многое зависит от используемого словаря, выбранного канала связи, диалекта, возраста и эмоционального состояния испытуемых дикторов. Поэтому проведение измерений для получения статистики надежных и повторяемых оценок параметров системы при изменяющихся условиях требует больших затрат.

     При использовании радиоканалов эти  трудности еще более возрастают из-за неопределенных условий распространения, и достичь повторяемости результатов невозможно без применения моделей радиоканалов.

     Для дуплексных систем дополнительное влияние на качество оказывает временная задержка сигнала, вносимая речевым скремблером или шифратором.

     Поскольку основным показателем секретности  передаваемых речевых сообщений является его неразборчивость при перехвате потенциальными подслушивающими лицами, сравнение по степеням защиты является определяющим моментом при выборе пользователем конкретной системы закрытия речи.

     Закрытие  канала с помощью  скремблеров

     Как правило, аналоговые скремблеры используются там, где применение цифровых систем закрытия речи затруднено из-за наличия возможных ошибок передачи (наземные линии связи с плохими характеристиками или каналы дальней радиосвязи), обеспечивают тактический уровень защиты и хорошо предохраняют переговоры от посторонних "случайных ушей", имеющих ограниченные ресурсы, будь то соседи или сослуживцы. Для таких применений годятся системы со статическим закрытием, то есть осуществляющие шифрование по фиксированному ключу.

     Если  же необходимо сохранить конфиденциальность информации от возможных конкурентов, обладающих достаточным техническим и специальным оснащением, то нужно применять аналоговые скремблеры среднего уровня закрытия с динамически меняющим в процессе разговора ключом. Естественно, что эти системы будут дороже, чем системы закрытия с фиксированным ключом, однако они настолько осложнят работу неприятеля по разработке дешифрующего алгоритма, что время, потраченное на это, значительно обесценит добытую информацию из перехваченного сообщения.

     Поскольку в таких устройствах закрытия, как правило, перед началом сообщения передается синхропоследовательность, содержащая часть дополнительной информации о ключе именно этого передаваемого сообщения, у противника имеется только один шанс попытаться его раскрыть, перебрав широкое множество ключевых установок, и, если ключи меняются ежедневно, то даже при известном алгоритме преобразования речи не придется перебрать много тысяч вариантов в поисках истинной ключевой подстановки.

     В случае, если есть предположение, что  в целях добывания крайне интересующей его информации, противник может воспользоваться услугами высококвалифицированных специалистов и их техническим арсеналом, то для того, чтобы быть уверенным в отсутствии утечки информации, необходимо применять системы закрытия речи, обеспечивают стратегическую (самую высокую) степень защиты. Это могут обеспечить лишь устройства дискретизации речи с последующим шифрованием и новый тип аналоговых скремблеров. Последние используют методы преобразования аналогового речевого сигнала в цифровую форму, затем применяют методы криптографического закрытия, аналогичные тем, что используются для закрытия данных, после чего результирующее закрытое сообщение преобразуется обратно в аналоговый сигнал и подается в линию связи.

     Для раскрытия полученного сигнала  на приемном конце производятся обратные преобразование. Эти новейшие гибридные устройства легко адаптируются к существующим коммуникационным сетям и предлагают значительно более высокий уровень защиты речевых сообщений, чем традиционные аналоговые скремблеры, с сохранением всех преимуществ последних в разборчивости и узнаваемости восстановленной речи.

     Следует отметить, что в системах засекречивания речи, основанных на шифре перестановки N речевых элементов, общее число ключей-перестановок равно N!.

     Однако  это число не отражает реальной криптографической стойкости системы из-за избыточности информации, содержащейся в речевом сигнале, а также из-за разборчивости несовершенным образом переставленной в инвертированной речи.

     Закрытие  канала с помощью  вокодеров 

     1. Системы сжатия речи

     Голосовой тракт человека представляет собой  акустическую трубу, которая с одной стороны оканчивается голосовыми связками, а с другой губами. Форма голосового тракта определяется положением губ, челюстей языка и мягкого неба.

     Звуки в этой системе образуются тремя способами. Вокализованные (звонкие) звуки - путем возбуждения голосового тракта квазипериодическими импульсами воздушного давления, создаваемыми вибрациями голосовых связок. Фрикативные звуки образуются проталкиванием воздуха через сужения в определенных областях голосового тракта, в результате чего возникает турбулентность, которая является источником шума, возбуждающего голосовой тракт. Взрывные звуки образуются путем создания избыточного давления в области полного смыкания голосового тракта с последующим его быстрым размыканием. Все эти источники создают широкополосное возбуждение голосового тракта, который в свою очередь действует как линейный фильтр с изменяющимися во времени параметрами.

     На  рис. 2.2 приведена модель источника речи на основе цифрового представления речевых сигналов. Предполагается, что в этой модели дискретные отсчеты речевого сигнала формируются на выходе ЦФ с переменными параметрами, который аппроксимирует передаточные свойства голосового тракта, обусловленные формой импульсов возбуждения.

       

       

     

     

     

       

       

     Рис. 2.2 - модель источника речи 

     На  временном интервале порядка 10 ms характеристики ЦФ можно считать неизменными. На каждом таком интервале ЦФ может быть охарактеризован совокупностью своих коэффициентов. В случае вокализованной речи ЦФ возбуждается генератором квазиканонической импульсной последовательности, расстояние между соседними импульсами которого соответствует периоду основного тона. На интервалах невокализованной речи ЦФ возбуждается генератором случайных чисел, который вырабатывает шумовой сигнал с равномерной спектральной плотностью. В обоих случаях сигнал, поступивший на ЦФ, управляется по амплитуде.

     На  рассмотренной модели базируются многочисленные способы представления речевых сигналов. По сложности реализации эти способы кодирования речи занимают широкий диапазон от простейшей периодической дискретизации до оценок параметров модели изображенной на рис. 2.2.

     Существует  несколько подходов к сжатию речевых  сигналов:

     - кодирование формы волны речевого сигнала;

     - кодирование параметров речевого  тракта человека и источника  возбуждения;

     - кодирование символьной информации (фонем);

     - кодирование лингвистической информации (слов, фраз и т.п.).

     1.1 Непосредственное  кодирование формы речевого сигнала

     Исходный  речевой сигнал представляет собой  акустическую волну (волна давления в воздухе), которую можно преобразовать в электрический сигнал с помощью микрофона. Будем считать, что спектр речевого сигнала лежит в диапазоне от 100 до 4000 Гц. Динамический диапазон изменения амплитуды, достаточный для описания речевых сигналов, составляет 12 двоичных разрядов.

     Первым  шагом, обеспечивающим сжатие речевого сигнала, является попытка обеспечения равномерной относительной точности измерения значения амплитуды сигнала. Для этого 14-12-ти разрядный динамический диапазон амплитуды разбивают на 8 логарифмических поддиапазонов, в каждом из которых значение амплитуды кодируют 5 разрядами и, таким образом, достигают сокращения информации до 64000 бит/с (кодирование по m- и A- законам в соответствии со стандартом ITU -G.711). Следующим шагом является адаптивная дифференциальная импульсно-кодовая модуляция (АДИКМ), (например, в соответствии со стандартами G.721 или G.726 8-40000 бит/с), с помощью которой осуществляют кодирование (аппроксимацию) степени приращения амплитуды сигнала во времени. Таким путем удается достичь степени сжатия речевого сигнала порядка 32000-16000 бит/сек., причем приемлемое (коммерческое) качество речи (по критерию отношения: полезный_сигнал/шум) обеспечивается до 24000 бит/сек. При более низких скоростях кодирования сохраняется разборчивость речи, но характерны сильные нелинейные и частотные искажения сигнала и ухудшение отношения сигнал/шум. Дальнейшее уменьшение информационной емкости сигнала с помощью данного подхода считается неэффективным.

     1.1.2. Параметрическое  кодирование

     Низкоскоростное кодирование складывается из двух основных процессов:

     - параметрическое представление  речевого сигнала минимальным  набором параметров, характеризующих источник возбуждения и акустический фильтр, определяющий передаточную функцию голосового тракта;

     - дискретизация речевых параметров  для их передачи по каналу  связи при использовании минимальной  емкости канала.

     Для параметрического описания речи обычно используется подход, основанный на вычислении параметров, описывающих передаточную функцию речевого тракта человека и функцию возбуждения. Такими параметрами могут являться: осредненные значения энергии речевого сигнала, разбитого на ряд частотных полос, или коэффициенты линейного предсказания (или, связанные с ними, коэффициенты отражения). Обычно для кодирования речи используются 8-10 параметров (один из вышеперечисленных наборов), вычисляемых на интервалах порядка 5-30 мс (так как на таком интервале речь может считаться стационарным процессом), кроме того, вычисляется параметр, характеризующий изменение амплитуды либо мощности сигнала, период основного тона речи, а также признак типа тон/шум/пауза, характеризующий способ возбуждения речевого сигнала.

     Полученный  набор параметров, оптимизированный по критерию точности и минимальной разрядности представления, передается в цифровом виде по каналу связи в реальном времени, а на приемном конце осуществляется синтез речевого сигнала по перечисленным параметрам. Таким путем удается снизить информационную емкость речевого сигнала до уровня 16000 - 1200 бит/сек, причем с сохранением разборчивости и индивидуальных особенностей речи говорящего.

     1.1.3. Другие способы  кодирования

     Следующим шагом в направлении дальнейшего увеличения компрессии является создание фонемного вокодера. Как известно, минимальной слогоразличительной (и словоразличительной) единицей речи является фонема. Поэтому создание устойчивого метода распознавания фонем позволит снизить скорость кодирования речевой информации до 100 бит/сек, что соответствует информационной скорости текста. Следует отметить, что на приемной стороне речь будет восстановлена синтезатором речи по фонемному тексту, при этом информация об индивидуальности диктора будет утрачена.

     1.2. Канальные вокодеры

Информация о работе Разработка устройства защиты телефонной линии от прослушивания