Распределительные системы обработчиков данных

Автор работы: Пользователь скрыл имя, 08 Января 2013 в 02:39, лекция

Краткое описание

Распределенная система обработки данных (РСОД) - любая система, позволяющая организовать взаимодействие независимых, но связанных между собой ЭВМ. Эти системы предназначены для автоматизации таких объектов, которые характеризуются территориальной распределенностью пунктов возникновения и потребления информации. Концептуально распределенная обработка подразумевает тот или иной вид организации сети связи и децентрализацию трех категорий ресурсов:
• аппаратных вычислительных средств и собственно вычислительной мощности;
• баз данных;

Содержимое работы - 1 файл

SETI_egzamen.docx

— 1.11 Мб (Скачать файл)

Коммутация каналов  на основе разделения времени

Аппаратура TDM-сетей - мультиплексоры, коммутаторы, демультиплексоры - работает в режиме разделения времени, поочередно обслуживая в течение цикла своей работы все абонентские каналы. Цикл работы оборудования TDM равен 125 мкс, что соответствует периоду следования замеров голоса в цифровом абонентском канале. Это значит, что мультиплексор или коммутатор успевает вовремя обслужить любой абонентский канал и передать его очередной замер далее по сети. Каждому соединению выделяется один квант времени цикла работы аппаратуры, называемый также тайм-слотом. Длительность тайм-слота зависит от числа абонентских каналов, обслуживаемых мультиплексором TDM или коммутатором.

Мультиплексор принимает  информацию по N входным каналам от конечных абонентов, каждый из которых передает данные по абонентскому каналу со скоростью 64 Кбит/с - 1 байт каждые 125 мкс. В каждом цикле мультиплексор выполняет следующие действия:

• прием от каждого канала очередного байта данных;

• составление из принятых байтов уплотненного кадра, называемого также обоймой;

• передача уплотненного кадра на выходной канал с битовой скоростью, равной Nx64 Кбит/с.

Порядок байт в  обойме соответствует номеру входного канала, от которого этот байт получен. Количество обслуживаемых мультиплексором абонентских каналов зависит от его быстродействия. Например, мультиплексор Т1, представляющий собой первый промышленный мультиплексор, работавший по технологии TDM, поддерживает 24 входных абонентских канала, создавая на выходе обоймы стандарта Т1, передаваемые с битовой скоростью 1,544 Мбит/с.

Демультиплексор выполняет обратную задачу - он разбирает байты уплотненного кадра и распределяет их по своим нескольким выходным каналам, при этом он считает, что порядковый номер байта в обойме соответствует номеру выходного канала.

Коммутатор принимает уплотненный кадр по скоростному каналу от мультиплексора и записывает каждый байт из него в отдельную ячейку своей буферной памяти, причем в том порядке, в котором эти байты были упакованы в уплотненный кадр. Для выполнения операции коммутации байты извлекаются из буферной памяти не в порядке поступления, а в таком порядке, который соответствует поддерживаемым в сети соединениям абонентов. Так, например, если первый абонент левой части сети рис. 54 должен соединиться со вторым абонентом в правой части сети, то байт, записанный в первую ячейку буферной памяти, будет извлекаться из нее вторым. "Перемешивая" нужным образом байты в обойме, коммутатор обеспечивает соединение конечных абонентов в сети.

Однажды выделенный номер  тайм-слота остается в распоряжении соединения "входной канал - выходной слот" в течение всего времени существования этого соединения, даже если передаваемый трафик является пульсирующим и не всегда требует захваченного количества тайм-слотов. Это означает, что соединение в сети TDM всегда обладает известной и фиксированной пропускной способностью, кратной 64 Кбит/с.

Работа оборудования TDM напоминает работу сетей с коммутацией пакетов, так как каждый байт данных можно считать некоторым элементарным пакетом. Однако, в отличие от пакета компьютерной сети, "пакет" сети TDM не имеет индивидуального адреса. Его адресом является порядковый номер в обойме или номер выделенного тайм-слота в мультиплексоре или коммутаторе. Сети, использующие технику TDM, требуют синхронной работы всего оборудования, что и определило второе название этой техники - синхронный режим передач (STM). Нарушение синхронности разрушает требуемую коммутацию абонентов, так как при этом теряется адресная информация. Поэтому перераспределение тайм-слотов между различными каналами в оборудовании TDM невозможно, даже если в каком-то цикле работы мультиплексора тайм-слот одного из каналов оказывается избыточным, так как на входе этого канала в этот момент нет данных для передачи (например, абонент телефонной сети молчит).

В зависимости  от направления возможной передачи данных способы передачи данных по линии связи делятся на следующие типы:

  • симплексный - передача осуществляется по линии связи только в одном на-правлении;
  • полудуплексный - передача ведется в обоих направлениях, но попеременно во времени. Примером такой передачи служит технология Ethernet;
  • дуплексный - передача ведется одновременно в двух направлениях.

Дуплексный режим - наиболее универсальный и производительный способ работы канала. Самым простым  вариантом организации дуплексного  режима является использование двух независимых физических каналов (двух пар проводников или двух световодов) в кабеле, каждый из которых работает в симплексном режиме, то есть передает данные в одном направлении.

Модемы для организации  дуплексного режима работы на двухпроводной  линии применяют технику FDM. Модемы, использующие частотную модуляцию, работают на четырех частотах: две  частоты - для кодирования единиц и нулей в одном направлении, а остальные две частоты - для  передачи данных в обратном направлении.

При цифровом кодировании  дуплексный режим на двухпроводной  линии организуется с помощью  техники TDM. Часть тайм-слотов используется для передачи данных в одном направлении, а часть - для передачи в другом направлении.

В волоконно-оптических кабелях  при использовании одного оптического волокна для организации дуплексного режима работы применяется передача данных в одном направлении с помощью светового пучка одной длины волны, а в обратном - другой длины волны. Такая техника относится к методу FDM, однако для оптических кабелей она получила название разделения по длине волны (Wave Division Multiplexing, WDM). WDM применяется и для повышения скорости передачи данных в одном направлении, обычно используя от 2 до 16 каналов.

WDM

Спектральное уплотнение каналов (англ. Wavelength-division multiplexing, WDM, буквально мультиплексирование с разделением по длине волны) — технология, позволяющая одновременно передавать несколько информационных каналов по одному оптическому волокну на разных несущих частотах.

Технология WDM позволяет существенно увеличить пропускную способность канала, причем она позволяет использовать уже проложенные волоконно-оптические линии. Благодаря WDM удается организовать двустороннюю многоканальную передачу трафика по одному волокну. В простейшем случае каждый лазерный передатчик генерирует сигнал на определенной частоте из частотного плана. Все эти сигналы перед тем, как вводятся в оптическое волокно, объединяются мультиплексором (MUX). На приемном конце сигналы аналогично разделяются демультиплексором (DEMUX).

Мультиплексоры/демультиплексоры (MUX/DEMUX); позволяют суммировать и разделять оптические сигналы.

Уплотнение с  кодовым разделением (Code Division Multiplexing - CDM)

В данной схеме все передатчики  транслируют сигналы на одной  и той же частоте , в области  s и во время t, но с разными кодами.В схеме CDM каждый передатчик заменяет каждый бит исходного потока данных на CDM-символ - кодовую последовательность длиной в 11, 16, 32, 64 и т. п. бит (их называют чипами). Кодовая последовательность уникальна для каждого передатчика.

Приемник знает CDM-код  передатчика, сигналы которого должен воспринимать. Он постоянно принимает  все сигналы и оцифровывает их. Затем в специальном устройстве (корреляторе) производится операция свертки (умножения с накоплением) входного оцифрованного сигнала с известным  ему CDM-кодом и его инверсией

Наиболее сильная сторона  данного уплотнения заключается  в повышенной защищенности и скрытности передачи данных: не зная кода, невозможно получить сигнал, а в ряде случаев - и обнаружить его присутствие. Кроме того, кодовое пространство несравненно более значительно по сравнению с частотной схемой уплотнения, что позволяет без особых проблем присваивать каждому передатчику свой индивидуальный код. Основной же проблемой кодового уплотнения до недавнего времени являлась сложность технической реализации приемников и необходимость обеспечения точной синхронизации передатчика и приемника для гарантированного получения пакета.

11.

Амплитудная модуляция (ASK-Amplitude-Shift Keying)

Амплитудная манипуляция (англ. Amplitude-shift keying (ASK)) – это один из самых простых видов модуляции цифровых сигналов. Амплитудная манипуляция подразумевает, что для передачи "0" и "1" применяются разные уровни несущего сигнала по напряжению. Например, передаче "0" будет соответствовать 5В, а "1" - 1В. При этом частота и фаза несущего сигнала остаются постоянными.

Устройства для реализации амплитудной манипуляции также  просты и недороги. Кроме того, амплитудная манипуляция требует минимальной ширины полосы пропускания канала связи.

Однако аналоговая манипуляция  редко используется на практике, т.к. она наименее устойчива к воздействию  внешних помех из всех. Так, например небольшая и кратковременная  импульсная помеха (наиболее распространенный из всех видов помех) может повлечь  целую пачку ошибочно принятых символов. Обычно аналоговая манипуляция применяется в сочетании с другими видами манипуляции и не используется сама по себе. Амплитудная манипуляция нашла применение в оптических каналах связи, т.к. они гораздо меньше подвержены амплитудным помехам.

 Частотная манипуляция сигналов

При частотной  манипуляции в зависимости от передаваемого символа изменяется частота несущего сигнала. Например, для передачи "0" используется частота 5Гц, а "1" - 10Гц. Этот вид манипуляции также не сложен в реализации и является более помехоустойчивым, чем амплитудная манипуляция. Но, в эфире довольно часто наблюдаются частотно-селективные помехи, вызванные работой промышленного оборудования (генераторы, трансформаторы). Если передаваемый сигнал окажется в полосе действия таких помех, то возможен высокий процент потери информации или даже полное "перекрытие" канала связи.

Частотная манипуляция также  как и амплитудная редко применяется  на практике. ЧМ используется лишь в  хорошо защищенных каналах связи  при передаче на небольшие расстояния.

Двоичная фазовая манипуляция BPSK— самая простая форма фазовой манипуляции (ФМн). Работа схемы двоичной ФМн заключается в смещении фазы несущего колебания на одно из двух значений, нуль или pi (180°). Эта модуляция является самой помехоустойчивой из всех видов ФМн, то есть при использовании бинарной ФМн вероятность ошибки при приёме данных наименьшая. Однако каждый символ несет только 1 бит информации, что обуславливает наименьшую в этом методе модуляции скорость передачи информации.

Кодирование одним  символом двух бит передаваемой информации

QPSK модуляция строится на основе кодирования двух бит передаваемой информации одним символом. При этом символьная скорость в два раза ниже скорости передачи информации. Для того чтобы понять как один символ кодирует сразу два бита рассмотрим рисунок 1.

На рисунке 1 показаны векторные  диаграммы BPSK и QPSK сигналов. BPSK сигнал был рассмотрен ранее, и мы говорили, что один символ BPSK кодирует один бит информации, при этом на векторной диаграмме BPSK всего две точки на синфазной оси I(t), соответствующие нулю и единице передаваемой информации. Квадратурный канал Q(t)  в случае с BPSK всегда равен нулю.

 Точки на векторной  диаграмме образуют созвездие  фазовой манипуляции. Для того  чтобы осуществить кодирование  одним символом двух бит информации, необходимо, чтобы созвездие состояло  из четырех точек, как это  показано на векторной диаграмме  QPSK рисунка 1. Тогда мы получим, что и I(t)   и Q(t) отличны от нуля, все точки созвездия расположены на единичной окружности. Тогда кодирование можно осуществить следующим образом: разбить битовый поток на четные и нечетные биты, тогда I(t) будет кодировать четные биты, а   Q(t)– нечетные. Два последовательно идущих друг за другом бита информации кодируются одновременно синфазным  I(t) и квадратурным   сигналамиQ(t).

QAM это метод модуляции —квадратурно-амплитудной модуляцией(КАМ). Он используется для передачи цифровых сигналов и предусматривает дискретное изменение состояния сегмента несущей одновременно по фазе и амплитуде.

В телевидении может применяться  QAM модуляция различного уровня от 16 QAM до 256 QAM. Уровень модуляции определяет количество состояний несущей, используемых для передачи информации. Число бит, передаваемых одним состоянием, определяется как двоичный логарифм от N (Log2N), где N — уровень модуляции. Так, модуляция 16 QAM передает 4 бита информации, а модуляция 256 QAM — 8 бит.

Очевидно, что чем выше уровень модуляции, тем большими скоростными возможностями и  меньшей помехоустойчивостью она  обладает. QAM модуляция  чувствительна к нелинейным искажениям и шумам радиотракта. Поэтому она почти не используется для каналов спутниковой связи.

QAM модуляция используется и для передачи данных по сетям кабельного ТВ.

 

DPSK

Альтернативной формой двухуровневой  PSK является дифференциальная PSK (DPSK), пример которой приведен на рис. 1.7. В данной системе двоичный 0 представляется сигнальным пакетом, фаза которого совпадает с фазой предыдущего посланного пакета, а двоичная 1 представляется сигнальным пакетом с фазой, противоположной фазе предыдущего пакета. Такая схема называется дифференциальной, поскольку сдвиг фаз выполняется относительно предыдущего переданного бита, а не относительно какого-то эталонного сигнала. При дифференциальном кодировании передаваемая информация представляется не сигнальными посылками, а изменениями между последовательными сигнальными посылками. Схема DPSK делает излишним строгое согласование фазы местного гетеродина приемника и передатчика. До тех пор пока предыдущая полученная фаза точна, точен и фазовый эталон.

12. Канал тональной частоты (англ. voice frequency circuit) — это совокупность технических средств и среды распространения, обеспечивающая передачу электрических сигналов связи в эффективно передаваемой полосе частот (ЭППЧ) 0,3 — 3,4 кГц. Канал тональной частоты является единицей измерения ёмкости (уплотнения) аналоговых систем передачи.

Информация о работе Распределительные системы обработчиков данных