Автор работы: Пользователь скрыл имя, 12 Ноября 2010 в 09:59, реферат
Флэш-память используют в принтерах, КПК, видеоплатах, роутерах, брандмауэрах, сотовых телефонах, электронных часах, записных книжках, телевизорах, кондиционерах, микроволновых печах и стиральных машинах... список можно продолжать бесконечно. А в последние годы флэш становится основным типом сменной памяти, используемой в цифровых мультимедийных устройствах, таких как mp3-плееры и игровые приставки. А все это стало возможным благодаря созданию компактных и мощных процессоров.
Однако при покупке какого-либо устройства, помещающегося в кармане, не стоит ориентироваться лишь на процессорную мощность, поскольку в списке приоритетов она стоит далеко не на первом месте.
Введение
Что такое flash- память?
Организация flash-памяти
Архитектура флэш-памяти
Карты памяти (флэш-карты)
Вывод
Литература
Преимущества флэш-памяти по сравнению с EEPROM:
1.
Более высокая скорость записи
при последовательном доступе
за счёт того, что стирание
информации во флэш
2.
Себестоимость производства
Недостаток:
Медленная запись в произвольные
участки памяти.
3.Организация flash-памяти
Ячейки
флэш-памяти бывают как на одном, так
и на двух транзисторах.
В простейшем случае каждая ячейка хранит
один бит информации и состоит из одного
полевого транзистора со специальной
электрически изолированной областью
("плавающим" затвором - floating gate), способной
хранить заряд многие годы. Наличие или
отсутствие заряда кодирует один бит информации.
При записи заряд помещается на плавающий
затвор одним из двух способов
(зависит от типа ячейки): методом инжекции
"горячих" электронов или методом
туннелирования электронов. Стирание
содержимого ячейки (снятие заряда с
"плавающего" затвора) производится
методом тунеллирования.
Как правило, наличие заряда на транзисторе
понимается как логический "0", а его
отсутствие - как логическая "1". Современная
флэш-память обычно изготавливается по
0,13- и 0,18-микронному техпроцессу.
Общий принцип работы ячейки флэш-памяти.
Рассмотрим простейшую ячейку флэш-памяти
на одном n-p-n транзисторе. Ячейки подобного
типа чаще всего применялись во flash-памяти
с NOR архитектурой, а также в микросхемах
EPROM. Поведение транзистора зависит от
количества электронов на "плавающем"
затворе. "Плавающий" затвор играет
ту же роль, что и конденсатор в DRAM, т. е.
хранит запрограммированное значение.
Помещение заряда на "плавающий"
затвор в такой ячейке производится методом
инжекции "горячих" электронов (CHE
- channel hot electrons), а снятие заряда осуществляется
методом квантомеханического туннелирования
Фаулера-Нордхейма (Fowler-Nordheim [FN]). [pic] При
чтении, в отсутствие заряда на "плавающем"
затворе, под воздействием положительного
поля на управляющем затворе, образуется
n-канал в подложке между истоком и
стоком, и возникает ток. [pic] Наличие
заряда на "плавающем" затворе
меняет вольт-амперные характеристики
транзистора таким образом, что при
обычном для чтения напряжении канал
не появляется, и тока между истоком
и стоком не возникает. [pic] При
программировании на сток и управляющий
затвор подаётся высокое напряжение
(причём на управляющий затвор напряжение
подаётся приблизительно в два раза
выше). "Горячие" электроны из
канала инжектируются на плавающий
затвор и изменяют вольт-амперные
характеристики транзистора. Такие
электроны называют "горячими" за
то, что обладают высокой энергией,
достаточной для преодоления потенциального
барьера, создаваемого тонкой плёнкой
диэлектрика. [pic] При стирании высокое
напряжение подаётся на исток. На
управляющий затвор (опционально)
подаётся высокое отрицательное
напряжение. Электроны туннелируют
на исток.
Эффект
туннелирования - один из эффектов, использующих
волновые свойства электрона. Сам эффект
заключается в преодолении
Важно отметить, что при туннелировании электрон оказывается "по другую сторону", не проходя через диэлектрик. Такая вот "телепортация".
Различия методов тунеллирования Фаулера-Нордхейма (FN) и метода инжекции "горячих" электронов:
Channel
FN tunneling - не требует большого
CHE
injection (CHEI) - требует более высокого
напряжения, по сравнению с FN.
Таким образом, для работы
Программирование методом CHE осуществляется быстрее, чем методом FN.
Следует заметить, что, кроме FN и CHE, существуют другие методы программирования и стирания ячейки, которые успешно используются на практике, однако два описанных нами применяются чаще всего.
Процедуры
стирания и записи сильно изнашивают
ячейку флэш-памяти, поэтому в новейших
микросхемах некоторых
Некоторые
виды ячеек флэш-памяти на основе МОП-транзисторов
с
"плавающим" затвором:
Stacked
Gate Cell - ячейка с многослойным
затвором. Метод стирания -
Source-Poly FN Tunneling, метод записи - Drain-Side CHE Injection.
SST
Cell, или SuperFlash Split-Gate Cell (Silicon Storage Technology
- компания-разработчик
Injection.
Two
Transistor Thin Oxide Cell - двухтранзисторная
ячейка с тонким слоем окисла.
Метод стирания - Drain-Poly FN Tunneling, метод
записи -
Drain FN Tunneling.
Другие виды ячеек:
Кроме
наиболее часто встречающихся ячеек
с "плавающим" затвором, существуют
также ячейки на основе SONOS-транзисторов,
которые не содержат плавающего затвора.
SONOS-транзистор напоминает обычный
МНОП (MNOS) транзистор. В SONOS-ячейках функцию
"плавающего" затвора и окружающего
его изолятора выполняет
(Semiconductor Oxide Nitride Oxide Semiconductor) как Полупроводник-
Диэлектрик-Нитрид-Диэлектрик-
В последнее время многие компании начали
выпуск микросхем флэш-памяти, в которых
одна ячейка хранит два бита. Технология
хранения двух и более бит в одной ячейке
получила название MLC (multilevel cell - многоуровневая
ячейка). Достоверно известно об успешных
тестах прототипов, хранящих 4 бита в одной
ячейке. В настоящее время многие компании
находятся в поисках предельного числа
бит, которое способна хранить многоуровневая
ячейка.
В технологии MLC используется аналоговая
природа ячейки памяти. Как известно, обычная
однобитная ячейка памяти может принимать
два состояния -
"0" или "1". Во флэш-памяти эти
два состояния различаются по величине
заряда, помещённого на "плавающий"
затвор транзистора. В отличие от
"обычной" флэш-памяти, MLC способна
различать более двух величин зарядов,
помещённых на "плавающий" затвор,
и, соответственно, большее число состояний.
При этом каждому состоянию в соответствие
ставится определенная комбинация значений
бит.
Во время записи на "плавающий" затвор
помещается количество заряда, соответствующее
необходимому состоянию. От величины заряда
на "плавающем" затворе зависит пороговое
напряжение транзистора. Пороговое напряжение
транзистора можно измерить при чтении
и определить по нему записанное состояние,
а значит и записанную последовательность
бит.
Основные преимущества MLC микросхем:
. Более низкое соотношение $/МБ
.
При равном размере микросхем
и одинаковом техпроцессе "
.
На основе MLC создаются микросхемы
большего, чем на основе однобитных
ячеек, объёма
Основные недостатки MLC:
.
Снижение надёжности, по сравнению
с однобитными ячейками, и, соответственно,
необходимость встраивать
.
Быстродействие микросхем на
основе MLC зачастую ниже, чем у
микросхем на основе
.
Хотя размер MLC-ячейки такой же,
как и у однобитной, дополнительно
тратится место на
Технология многоуровневых ячеек от Intel
(для NOR-памяти) носит название
StrtaFlash, аналогичная от AMD (для NAND) – MirrorBit
4. Архитектура флэш-памяти.
Существует
несколько типов архитектур (организаций
соединений между ячейками) флэш-памяти.
Наиболее распространёнными в настоящее
время являются микросхемы с организацией
NOR и NAND. NOR (NOT OR, ИЛИ-НЕ) [pic] Ячейки работают
сходным с EPROM способом. Интерфейс
параллельный. Произвольное чтение
и запись. Преимущества: быстрый
произвольный доступ, возможность
побайтной записи. Недостатки:
относительно медленная запись и
стирание. Из перечисленных здесь
типов имеет наибольший размер ячейки,
а потому плохо масштабируется.
Единственный тип памяти, работающий
на двух разных напряжениях.
Идеально подходит для хранения кода
программ (PC BIOS, сотовые телефоны),
идеальная замена обычному EEPROM.
Основные производители: AMD, Intel, Sharp,
Micron, Ti, Toshiba, Fujitsu, Mitsubishi, SGS-Thomson,
STMicroelectronics, SST, Samsung, Winbond, Macronix,
NEC, UMC. Программирование: методом
инжекции "горячих" электронов
Стирание: туннеллированием FN
NAND (NOT AND, И-НЕ) [pic] Доступ произвольный,
но небольшими блоками (наподобие
кластеров жёсткого диска). Последовательный
интерфейс. Не так хорошо, как AND память
подходит для задач, требующих
произвольного доступа. Преимущества:
быстрая запись и стирание, небольшой
размер блока. Недостатки: относительно
медленный произвольный доступ, невозможность
побайтной записи. Наиболее подходящий
тип памяти для приложений, ориентированных
на блочный обмен: MP3 плееров,
цифровых камер и в качестве заменителя
жёстких дисков. Основные производители:
Toshiba, AMD/Fujitsu, Samsung, National Программирование:
туннеллированием FN Стирание:
туннеллированием FN AND (И) [pic] Доступ
к ячейкам памяти последовательный,
архитектурно напоминает NOR и NAND,
комбинирует их лучшие свойства.
Небольшой размер блока, возможно
быстрое мультиблочное стирание.
Подходит для потребностей массового
рынка. Основные производители:
Hitachi и Mitsubishi Electric. Программирование:
туннеллированием FN Стирание:
туннеллированием FN DiNOR (Divided bit-line NOR,
ИЛИ-НЕ с разделёнными разрядными линиями)
[pic] Тип памяти, комбинирующий свойства
NOR и NAND. Доступ к ячейкам произвольный.
Использует особый метод стирания
данных, предохраняющий ячейки от
пережигания (что способствует большей
долговечности памяти). Размер блока
в DiNOR всего лишь 256 байт. Основные
производители: Mitsubishi Electric, Hitachi,
Motorola. Программирование: туннеллированием
FN Стирание: туннеллированием
FN Примечания: В настоящее время чаще
всего используются память с архитектурой
NOR и NAND. Hitachi выпускает многоуровневую
AND-память с NAND-итерфейсом (SuperAnd или
AG-AND [Assist Gate-AND])
Доступ к флэш-памяти
Существует три основных типа доступа:
. обычный (Conventional): произвольный асинхронный доступ к ячейкам памяти.
. пакетный (Burst): синхронный, данные читаются параллельно, блоками по
16
или 32 слова. Считанные данные
передаются последовательно,
. страничный (Page): асинхронный, блоками по 4 или 8 слов. Преимущества: очень быстрый произвольный доступ в пределах текущей страницы.
Недостаток: относительно медленное переключение между страницами.
Примечание:
В последнее время появились
микросхемы флэш-памяти, позволяющие
одновременную запись и стирание
(RWW - Read While Write или Simultaneous
R/W) в разные банки памяти.
5.
Карты памяти (флэш-карты)
Наиболее
распространенные типы карт памяти: CompactFlash
(CF) (I,II),
MultiMedia Card, SD Card, Memory Stick, SmartMedia, xD-Picture Card,
PC-
Card (PCMCIA или ATA-Flash). Существуют и другие
портативные форм-факторы флэш-памяти,
однако встречаются они намного реже перечисленных
здесь.
Флэш-карты бывают двух типов: с параллельным
(parallel) и с последовательным (serial) интерфейсом.
Параллельный:
. PC-Card (PCMCIA или ATA-Flash)
. CompactFlash (CF)
.
SmartMedia (SSFDC)
Последовательный:
. MultiMedia Card (MMC)
. SD-Card (Secure Digital - Card)
. Sony Memory Stick
PC-Card (PCMCIA) или ATA Flash
Интерфейс: параллельный
Самым
старым и самым большим по размеру
следует признать PC Card (ранее этот
тип карт назывался PCMCIA [Personal Computer Memory
Card International
Association]). Карта снабжена ATA контроллером.
Благодаря этому обеспечивается эмуляция
обычного жесткого диска. В настоящее
время флэш- память этого типа используется
редко. PC Card бывает объемом до 2GB.
Существует три типа PC Card ATA (I, II и III). Все
они отличаются толщиной
(3,3 5,0 и 10,5 мм соответственно). Все три типа
обратно совместимы между собой (в более
толстом разъеме всегда можно использовать
более тонкую карту, поскольку толщина
разъема у всех типов одинакова – 3,3 мм).
Питание карт - 3,3В и 5В. ATA-flash как правило
относится к форм фактору PCMCIA