Окислительное фосфорилирование

Автор работы: Пользователь скрыл имя, 18 Января 2012 в 22:52, реферат

Краткое описание

Так как электроны всегда стремятся переходить от электроотрицательных систем к электроположительным, их транспорт по ЦПЭ к кислороду сопровождается снижением свободной энергии.
При сравнении величин электрохимических потенциалов переносчиков электронов (табл. 6-3) видно, что снижение свободной энергии происходит на каждом этапе ЦПЭ, и энергия электронов выделяется порциями.

Содержимое работы - 1 файл

Документ Microsoft Word.doc

— 44.50 Кб (Скачать файл)

8.   Окислительное фосфорилирование. Так как электроны всегда стремятся переходить от электроотрицательных систем к электроположительным, их транспорт по ЦПЭ к кислороду сопровождается снижением свободной энергии.  

При сравнении  величин электрохимических потенциалов переносчиков электронов (табл. 6-3) видно, что снижение свободной энергии происходит на каждом этапе ЦПЭ, и энергия электронов выделяется порциями.  

Вместе с тем  в дыхательной цепи можно выделить 3 участка, в которых перенос электронов сопровождается относительно большим снижением свободной энергии (рис. 6-11). Эти этапы способны обеспечить энергией синтез АТФ, так как количество выделяющейся свободной энергии приблизительно равно энергии, необходимой для синтеза АТФ из АДФ и фосфата. Экспериментально было подтверждено, что процесс переноса электронов по ЦПЭ и синтез АТФ энергетически сопряжены.  

Первый процесс - перенос электронов от восстановленных  коферментов NADH и FADH2 через ЦПЭ на кислород - экзергонический. Например:  

NADH + Н+ +1/2 O2 → NAD+ + H2O + 52 ккал/моль(≈220 кДж/моль). (1)  

Второй процесс - фосфорилирование АДФ, или синтез АТФ, - эндергонический:  

АДФ + Н3РО4+7,3 ккал/моль (30,5 кДж/моль) = АТФ + Н2О. (2)  

Синтез АТФ  из АДФ и Н3РО4 за счёт энергии  переноса электронов по ЦПЭ называют окислительным фосфорилированием. 
 
 

10. Орнитиновый  цикл 

        цикл мочевины, циклический ферментативный  процесс, состоящий из последовательных  превращений аминокислоты Орнитина  и приводящий к синтезу мочевины (См. Мочевина). О. ц. — важнейший путь ассимиляции аммиака (и тем самым его обезвреживания) у многих видов животных, а также у растений и микроорганизмов. Лучше всего реакции О. ц. изучены у млекопитающих (Х. Кребс и К. Хензелейт, 1932, и др.), у которых они осуществляются преимущественно в печени. О. ц. состоит из трёх основных реакций: превращение орнитина в Цитруллин, цитруллина — в Аргинин и расщепление аргинина на мочевину и орнитин (см. схему). Реакции I и II требуют затраты энергии, которая доставляется в форме аденозинтрифосфорной кислоты (АТФ). Реакция I протекает в два этапа: 1) образование карбамилфосфата, обладающего богатой энергией фосфатной связью, из NH3, CO2 и двух молекул АТФ (реакция активируется N-ацетилглутаминовой кислотой; NH3, по-видимому, доставляется в печень в виде глутамина, который расщепляется глутаминазой печени на NH3 и глутаминовую кислоту (См. Глутаминовая кислота)); 2) образование цитруллина при взаимодействии карбамилфосфата с орнитином (реакция идёт за счёт энергии связи карбамилфосфата). Реакция II также двухстадийна: цитруллин, реагируя с аспарагиновой кислотой, образует аргининоянтарную кислоту (реакция идёт при участии АТФ с освобождением адениловой кислоты — АМФ — и пирофосфата H4P2O7;), а аргининоянтарная кислота расщепляется на аргинин и фумаровую кислоту. Реакция III: аргинин гидролизуется до мочевины и орнитина, который вновь вступает в цикл. О. ц. обнаружен у млекопитающих, лягушек, черепах, дождевых червей, но отсутствует у змей, птиц, и, вероятно, у костистых рыб (у акуловых он функционирует). У растений и микроорганизмов О. ц. — важный путь связывания аммонийных солей и превращения их в органические азотистые соединения. См. также Азот в организме. 
 
 

9. Процесс синтеза РНК.       

Синтез РНК  в живой клетке проводится ферментом  — РНК-полимеразой. У эукариот разные типы РНК синтезируются разными, специализированными РНК-полимеразами. В целом матрицей синтеза РНК может выступать как ДНК, так и другая молекула РНК. Например, полиовирусы используют РНК-зависимую РНК-полимеразу для репликации своего генетического материала, состоящего из РНК[25]. Но РНК-зависимый синтез РНК, который раньше считался характерным только для вирусов, происходит и в клеточных организмах, в процессе так называемой РНК-интерференции[26]. 

Как в случае ДНК-зависимой РНК-полимеразы, так и в случае РНК-зависимой РНК-полимеразы фермент присоединяется к промоторной последовательности. Вторичная структура молекулы матрицы расплетается с помощью хеликазной активности полимеразы, которая при движении субстрата в направлении от 3' к 5' концу молекулы синтезирует РНК в направлении 5' → 3'. Терминатор транскрипции в исходной молекуле определяет окончание синтеза. Многие молекулы РНК синтезируются в качестве молекул-предшественников, которые подвергаются «редактированию» — удалению ненужных частей с помощью РНК-белковых комплексов[27]. 

Например, у кишечной палочки гены рРНК расположены в  составе одного оперона (в rrnB порядок  расположения такой: 16S — tRNAGlu 2 — 23S —5S) считываются в виде одной длинной  молекулы, которая затем подвергается расщеплению в нескольких участках с образованием сначала пре-рРНК, а затем зрелых молекул рРНК[28]. Процесс изменения нуклеотидной последовательности РНК после синтеза носит название процессинга или редактирования РНК. 

После завершения транскрипции РНК часто подвергается модификациям (см. выше), которые зависят от функции, выполняемой данной молекулой. У эукариот процесс «созревания» РНК, то есть её подготовки к синтезу белка, часто включает сплайсинг: удаление некодирующих белок последовательностей (интронов) с помощью рибонуклеопротеида сплайсосомы. Затем к 5' концу молекулы пре-мРНК эукариот добавляется особый модифицированный нуклеотид (кэп), а к 3' концу несколько аденинов, так назваемый «полиА-хвост»[27].1.  
 
 
 
 
 
 
 

 1.  Аминокислоты представляют собой структурные химические единицы или "строительные кирпичики", образующие белки. Аминокислоты на 16 процентов состоят из азота, это является основным химическим отличием от двух других важнейших элементов питания - углеводов и жиров. Важность аминокислот для организма определяется той огромной ролью, которую играют белки во всех процессах жизнедеятельности. Незаменимые аминокислоты не синтезируются клетками животных и человека и поступают в организм в составе белков пищи. Для человека незаменимые аминокислоты: валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин и в некоторых случаях аргинин. Для разных животных набор незаменимых аминокислот неодинаков. Отсутствие или недостаток незаменимых аминокислот приводит к остановке роста, падению массы, нарушениям обмена веществ, при острой недостаточности - к гибели организма. 

Валин (Вал; Val; V) 

Валин необходим  для метаболизма в мышцах, восстановления поврежденных тканей и для поддержания  нормального обмена азота в организме. Он может быть использован мышцами в качестве источника энергии. Чрезмерно высокий уровень валина может привести к таким симптомам, как парестезии (ощущение мурашек на коже). Валин содержится в следующих пищевых продуктах: зерновые, мясо, грибы, молочные продукты, арахис. Прием валина в виде пищевых добавок следует сбалансировать с приемом других разветвленных аминокислот - L-лейцина и L-изолейцина. 

Лейцин (Лей; Leu; L) 

Лейцин - незаменимая  аминокислота. Она защищает мышечные ткани и является источником энергии, а также способствует восстановлению костей, кожи, мышц. Лейцин несколько понижает уровень сахара в крови и стимулирует выделение гормона роста. К пищевым источникам лейцина относятся: бурый рис, бобы, мясо, орехи, соевая и пшеничная мука. Биологически активные пищевые добавки, содержащие лейцин, применяются в комплексе с валином и изолейцином. 

Изолейцин (Иле; Ile; I) 

Изолейцин - одна из незаменимых аминокислот, необходимых  для синтеза гемоглобина. Также  стабилизирует и регулирует уровень сахара в крови и процессы энергообеспечения. Метаболизм изолейцина происходит в мышечной ткани. Изолейцин очень нужен спортсменам, так как увеличивает выносливость и способствует восстановлению мышечной ткани. К пищевым источникам изолейцина относятся: миндаль, кешью, куриное мясо, яйца, рыба, чечевица, печень, мясо, рожь, большинство семян, соевые белки. 

Треонин (Тре; Tre; T) 

Треонин - это  незаменимая аминокислота, способствующая поддержанию нормального белкового  обмена в организме. Она важна  для синтеза коллагена и эластина, помогает работе печени и участвует в обмене жиров. Треонин находится в сердце, центральной нервной системе, скелетной мускулатуре и препятствует отложению жиров в печени. Эта аминокислота стимулирует иммунитет. 

Метионин (Мет; Met; M) 

Метионин - незаменимая  аминокислота, помогающая переработке  жиров, предотвращая их отложение в  печени и в стенках артерий. Эта  аминокислота способствует пищеварению, защищает от воздействия радиации, полезна при остеопорозе и  химической аллергии. Метионин применяют в комплексной терапии ревматоидного артрита и токсикоза беременности. Пищевые источники метионина: бобовые, яйца, чеснок, чечевица, мясо, лук, соевые бобы, семена и йогурт. 

Фенилаланин (Фен; Fhe; F) 

Фенилаланин в  организме может превращаться в другую аминокислоту - тирозин, которая, в свою очередь, используется в синтезе двух основных нейромедиаторов: допамина и норэпинефрина. Поэтому эта аминокислота влияет на настроение, уменьшает боль, улучшает память и способность к обучению, подавляет аппетит. Фенилаланин используют в лечении артрита, депрессии, болей при менструации, мигрени, ожирения. Биологически активные пищевые добавки, содержащие фенилаланин, не дают беременным женщинам, лицам с диабетом, высоким артериальным давлением, фенилкетонурией. 

Триптофан (Трп; Trp; W) 

Триптофан - это  незаменимая аминокислота, необходимая  для продукции ниацина. Он используется для синтеза в головном мозге  серотонина, одного из важнейших нейромедиаторов. Триптофан применяют при бессоннице, депрессии и для стабилизации настроения. Он используется при заболеваниях сердца, для контроля за массой тела, уменьшения аппетита, а также для увеличения выброса гормона роста. Триптофан снижает вредное воздействие никотина. К пищевым источникам триптофана относятся: бурый рис, деревенский сыр, мясо, арахис и соевый белок. 

Лизин (Лиз; Lys; K) 

Лизин - это незаменимая  аминокислота, входящая в состав практически  любых белков. Он необходим для  нормального формирования костей и  роста детей, способствует усвоению кальция и поддержанию нормального обмена азота у взрослых. Лизин участвует в синтезе антител, гормонов, ферментов, формировании коллагена и восстановлении тканей. Его применяют в восстановительный период после операций и спортивных травм. Прием добавок, содержащих лизин в комбинации с витамином С и биофлавоноидами, рекомендуется при вирусных заболеваниях. 

Аргинин (Арг; Arg; R) 

Аргинин замедлят рост опухолей, в том числе раковых, за счет стимуляции иммунной системы  организма. Его также применяют  при заболеваниях печени (циррозе и жировой дистрофии), он способствует дезинтоксикационным процессам в печени (прежде всего обезвреживанию аммиака). Семенная жидкость содержит аргинин; его иногда применяют в комплексной терапии бесплодия у мужчин. В соединительной ткани и в коже также находится большое количество аргинина, поэтому он эффективен при различных травмах. Аргинин - важный компонент обмена веществ в мышечной ткани. Аргинин помогает снизить вес.

Информация о работе Окислительное фосфорилирование