Молекулярно-кинетические свойства дисперсных систем

Автор работы: Пользователь скрыл имя, 12 Марта 2012 в 08:31, курсовая работа

Краткое описание

Все молекулярно-кинетические свойства вызваны хаотическим тепловым движением молекул дисперсионной среды, которое складывается из поступательного, вращательного и колебательного движения молекул.
Молекулы жидкой и газообразной дисперсионной среды находятся в постоянном движении и сталкиваются между собой. Среднее расстояние, проходимое молекулой до столкновения с соседней, называют средней длиной свободного пробега. Молекулы обладают различной кинетической энергией. При данной температуре среднее значение кинетической энергии молекул остается постоянным, составляя для одной молекулы и одного моля

Содержимое работы - 1 файл

курсовая по химии.doc

— 323.00 Кб (Скачать файл)


             

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

ГОУ ВПО «Благовещенский государственный педагогический университет»

Естественно-географический факультет

Кафедра химии

 

 

 

 

 

Курсовая работа

 

на тему: Молекулярно-кинетические свойства дисперсных систем

по дисциплине: коллоидная химия Обожаю свою страну! В 2012 ждем конец света, а в 2014 олимпиаду. У нас жениться можно в 16, а смотреть порно с 18- ти. Чтоб напиться, поводов не надо, ведь пьют у нас в трех случаях: с горя, от радости, и от скуки. Уникальная страна РОССИЯ!!!

 

 

 

 

 

 

 

 

 

 

 

 

Исполнитель:

студент группы 3 б/х

 

­­­­­­­­­­­­­­­­

_____________

дата

 

________________

подпись

 

А.А.Шпекторов

Руководитель:

( )           

­­­­­­­­­­­­­­­­

_____________

дата

 

________________

подпись

 

Н.А.Радионова

 

 

 

 

 

 

 

 

Благовещенск 2011

 

 

 

СОДЕРЖАНИЕ

 

 

 

 

 

 

 

 

 

 

ВВЕДЕНИЕ

Все молекулярно-кинетические свойства вызваны хаотическим тепловым движением молекул дисперсионной среды, которое складывается из поступательного, вращательного и колебательного движения молекул.

Молекулы жидкой и газообразной дисперсионной среды находятся в постоянном движении и сталкиваются между собой. Среднее расстояние, проходимое молекулой до столкновения с соседней, называют средней длиной свободного пробега. Молекулы обладают различной кинетической энергией. При данной температуре среднее значение кинетической энергии молекул остается постоянным, составляя для одной молекулы и одного моля:

; ,

где m – масса одной молекулы;

M – масса одного моля;

v – скорость движения молекул;

k – константа Больцмана;

R – универсальная газовая постоянная.

Флуктуация значений кинетической энергии молекул дисперсионной среды (т.е. отклонение от среднего) и является причиной молекулярно-кинетических свойств.

Изучение молекулярно-кинетических свойств возможно в результате применения статистических методов исследования, действительных для систем, состоящих из множества элементов (молекул). Исходя из допущения о беспорядочности движения отдельных молекул, теория определяет наиболее вероятное сочетание для систем из множества объектов. Молекулярно-кинетические свойства проявляются в жидкой и газообразной среде, молекулы которых обладают определенно подвижностью.

 

 

 

1 ЛИТЕРАТУРНЫЙ ОБЗОР

 

1.1 Молекулярно-кинетические свойства дисперсных систем

 

Дисперсной называют систему, в которой одно вещество распределено в среде другого, причем между частицами и дисперсионной средой есть граница раздела фаз. Дисперсные системы состоят из дисперсной фазы и дисперсионной среды.

Дисперсная фаза - это частицы, распределенные в среде. Ее признаки: дисперсность и прерывистость (рис. 1.1.1.1).

Дисперсионная среда - материальная среда, в которой находится дисперсная фаза. Ее признак - непрерывность.

Поверхность раздела фаз характеризуется раздробленностью и гетерогенностью. Раздробленность характеризуется:

1) степенью дисперсности: , [см-1; м-1], где S - суммарная межфазная поверхность или поверхность всех частиц дисперсной фазы; V - объем частиц дисперсной фазы.

2) дисперсностью - величиной, обратной минимальному размеру:

[; ];

3)удельной поверхностью: , [м2/кг; см2/г]; где m - масса частиц дисперсной фазы.

4) кривизной поверхности: . Для частицы неправильной формы                                                         ,

где r1 и r2 - радиусы окружностей при прохождении через поверхность и нормаль к ней в данной точке двух перпендикулярных плоскостей.

 

 

Молекулярно- кинетическая теория изучает законы самопроизвольного движения молекул. Некоторые свойства растворов обусловлены этим движением, т. е. Определяются не составом, а числом кинетических единиц- молекул в единице объема или массы. Коллоидно-дисперсные и микрогетерогенные системы обычно характеризуются дисперсностью, в качестве меры которой принята удельная поверхность. Удельная поверхность дисперсной фазы, содержащей одинаковые частицы, вычисляется по формуле:

 

(1)

 

 

Где Sч – поверхность частицы, Vч – ее объем.

К молекулярно- кинетическим свойствам дисперсных систем относятся: броуновское движение, осмос, диффузия.

Диффузией называется процесс самопроизвольного выравнивания концентраций в системе, приводящий к установлению одинакового химического потенциала каждого компонента во всех элементах объема системы. Для описания диффузии используется первый закон Фика:

 

                                                              (2)

где  – поток вещества, определяемый как количество вещества dm,

 

проходящего за время dt через поверхность S, D – коэффициент диффузии, grad C – градиент концентраций.

Осмос- это самопроизвольное проникновение растворителя в раствор, отделенный от него полупроницаемой перегородкой. В дальнейшем этот поток уравновешивается возникающим встречным градиентом давления. Этот процесс обусловлен, в термодинамической трактовке, ростом энтропии системы, а в кинетической, - избыточным числом ударов молекул растворителя о мембрану со стороны более разбавленного раствора. Принципиально осмос в дисперсных системах и растворах высокомолекулярных соединений не отличается от осмоса растворов низкомолекулярных соединений.

 

                                                                   (3)

где  - частичная концентрация – это число частиц в единице объема,

 

, k – постоянная Больцмана.

 

Осмотическое давления золей очень малая величина. Это объясняется чрезвычайно малыми значениями частичной концентрации или, иными словами, чрезвычайно большими значениями частичного веса коллоидных частиц по сравнению с молекулярным. Для двух систем при одной температуре:

 

                                                                  (4)

 

Осмотическое давление не постоянная величина. Это объясняется явлением агрегации, характерным для дисперсных систем:

 

                                                                  (5)

Совместное рассмотрение явления осмоса и диффузии приводит к выводу уравнения Эйнштейна:

,                                                                   (6)

 

где - константа Больцмана, B – коэффициент вязкого сопротивления среды.

 

 

Для сферических частиц:

(7)

где η - вязкость среды, r – радиус частицы. Поэтому для сферических частиц коэффициент диффузии может быть вычислен по формуле:

 

, []                                                             (8)

Источником броуновского движения являются не внешние причины, а внутренние, присущие системе. Иными словами, движение обусловлено столкновениями молекул среды (жидкости или газа) со взвешенными в ней частицами. Броуновское движение частиц описывается уравнением Эйнштейна – Смолуховского:

 

                                                                (9)

где - средний квадрат смещения частицы вдоль любой оси за время t. Для расчета проводятся измерения через равные промежутки времени смещения частицы по произвольно выбранному направлению x1, x2, x3,….,xi…. Затем находятся квадраты этих смещений x12, x22,…,xi2,… и среднее значение квадрата:

                                                                 (10)

Кроме поступательного, существует вращательное броуновское движение. В этом случае находится средний квадрат случайного поворота частицы вокруг оси , который также зависит от выбранных промежутков времени:

 

                                                               (11)

Где Θ - коэффициент вращательной диффузии.

Для сферических частиц коэффициент вращательной диффузии определяют по формуле:

 

                                                                 (12)

 

 

1.1.1 Броуновского движения

 

Броуновское движение, правильнее брауновское движение, тепловое движение частиц вещества (размерами в нескольких мкм и менее), находящихся во взвешенном состоянии в жидкости или в газе частиц. Причиной броуновского движения является ряд не скомпенсированных импульсов, которые получает броуновская частица от окружающих ее молекул жидкости или газа. Открыто Р. Броуном (1773 - 1858) в 1827. Видимые только под микроскопом взвешенные частицы движутся независимо друг от друга и описывают сложные зигзагообразные траектории. Броуновское движение не ослабевает со временем и не зависит от химических свойств среды. Интенсивность Броуновского движения увеличивается с ростом температуры среды и с уменьшением её вязкости и размеров частиц.

Последовательное объяснение Броуновского движения было дано А. Эйнштейном и М. Смолуховским в 1905-06 на основе молекулярно-кинетической теории. Согласно этой теории, молекулы жидкости или газа находятся в постоянном тепловом движении, причём импульсы различных молекул неодинаковы по величине и направлению. Если поверхность частицы, помещенной в такую среду, мала, как это имеет место для броуновской частицы, то удары, испытываемые частицей со стороны окружающих её молекул, не будут точно компенсироваться. Поэтому в результате "бомбардировки" молекулами броуновская частица приходит в беспорядочное движение, меняя величину и направление своей скорости примерно 1014 раз в сек. При наблюдении Броуновского движения фиксируется положение частицы через равные промежутки времени. Конечно, между наблюдениями частица движется не прямолинейно, но соединение последовательных положений прямыми линиями даёт условную картину движения.

В основе расчета – не истинный путь частицы дисперсной фазы, а сдвиг частиц. Если путь частицы определяется ломаной линией, то сдвиг х характеризует изменение координат частицы за определенный отрезок времени. Средний сдвиг определяет среднеквадратичное смещение частицы:

,

где х1, х2, хi – сдвиг частиц за определенное время.

Теория броуновского движения исходит из представления о взаимодействии случайной силы f(), характеризующей удары молекул, силы F, зависящей от времени, и силы трения при движении частиц дисперсной фазы в дисперсионной среде со скоростью v. Уравнение броуровского движения (уравнение Ланжевена) имеет вид: , где m – масса частицы;  - коэффициент вязкости дисперсионной среды. Для больших промежутков времени (>>m/) инерцией частиц m(dv/d) можно пренебречь. После интегрирования уравнения при условии, что среднее произведение импульсов случайной силы равно нулю, среднее значение флуктуации (средний сдвиг) равно: , где  - время; r – радиус частиц дисперсной              фазы; NA – число Авогадро частиц.

В этой формуле характеризует молекулярно-кинетические свойства дисперсионной среды,  - ее вязкость, r – радиус частиц – параметр, относящийся к дисперсной фазе, а время  определяет взаимодействие дисперсионной среды с дисперсной фазой.

Кроме поступательного, возможно вращательное броуновское движение для двухмерных частиц и частиц неправильной формы (нитей, волокон, хлопьев и т.д.).             

Броуновское движение наиболее интенсивно проявляется в высокодисперсных системах (размеры частиц 10-9  10-7 м), несмотря на то, что молекулы дисперсионной среды действуют также и на частицы средне- и грубодисперсных систем. Но в связи со значительным размером частиц число ударов молекул резко увеличивается. По законам статистики, импульс действия сил со стороны молекул среды взаимно компенсируется, а значительная масса и инерция крупных частиц оставляет воздействие молекул без последствий.

1.1.2 Диффузия

Диффузией называют самопроизвольное распространение вещества из области с большей концентрацией в область с меньшей концентрацией. Различают следующие виды диффузии: молекулярную, ионную и коллоидных частиц.

 

 

 

 

 

 

 

Ионная диффузия связана с самопроизвольным перемещением ионов.

Диффузия высокодисперсных коллоидных частиц показана на рис. 1.1.2.1. В нижней части концентрация частиц больше, чем в верхней, т.е. v1>v2 (где , м3 – численная концентрация частиц, N – число частиц дисперсной фазы, Vд.с. – объем дисперсной системы). Диффузия направлена из области с большей концентрации в область с меньшей концентрацией, т.е. снизу вверх (на рис. показано стрелкой). Диффузия характеризуется определенной скоростью перемещения вещества через поперечное сечение В, которая равна .

Информация о работе Молекулярно-кинетические свойства дисперсных систем