Лекции по "Химии"

Автор работы: Пользователь скрыл имя, 24 Ноября 2012 в 18:21, курс лекций

Краткое описание

Метаболизм (обмен веществ) – совокупность химических реакций, протекающих в живой клетке. Эти реакции протекают в определённой последовательности и тесно связаны меЮЮжду собой. Главные функции метаболизма в клетке:
а) запасание энергии, которая добывается путем расщепления пищевых веществ, поступающих в организм, или путем преобразования энергии солнечного света;
б) превращение молекул пищевых веществ в строительные блоки;
в) сборку белков, нуклеиновых кислот, липидов, полисахаридов и прочих клеточных компонентов из этих строительных блоков;
г) синтез и разрушение тех биомолекул, которые необходимы для выполнения специфических функций данной клетки.

Содержимое работы - 1 файл

блок 2 по химии.doc

— 1.30 Мб (Скачать файл)

Основным местом биосинтеза глюкозы de novo является печень. Глюконеогенез протекает также в корковом слое почек. Принято считать, что вклад почек в глюконеогенез в физиологических условиях составляет около 10% глюкозы, синтезируемой в организме; при патологических состояниях эта доля может значительно возрастать. Незначительная активность ферментов глюконеогенеза обнаружена в слизистой тонкого кишечника.

Последовательность реакций  глюконеогенеза представляет собой  обращение соответствующих реакций  гликолиза. Лишь три реакции гликолиза  необратимы вследствие происходящих в  ходе их значительных энергетических сдвигов:

а) фосфорилирование глюкозы;

б) фосфорилирование глюкозо-6-фосфата;

в) превращение фосфоенолпирувата  в пируват.

Обход этих энергетических барьеров обеспечивают ключевые ферменты глюконеогенеза.

Обратный переход пирувата в фосфоенолпируват требует участия  двух ферментов. Первый из них – пируваткарбоксилаза - катализирует реакцию образования оксалоацетата (рисунок 10.1, реакция 1). Коферментом пируваткарбоксилазы является биотин (витамин Н). Реакция протекает в митохондриях. Роль её заключается также в пополнении фонда оксалоацетата для цикла Кребса.

Все последующие реакции  глюконеогенеза протекают в цитоплазме. Мембрана митохондрий непроницаема для оксалоацетата, и он переносится в цитоплазму в виде других метаболитов: малата или аспартата. В цитоплазме указанные соединения вновь переходят в оксалоацетат. При участии фосфоенолпируваткарбоксикиназы из оксалоацетата образуется фосфоенолпируват (рисунок 10.1, реакция 2).

Фосфоенолпируват в  результате обращения ряда реакций  гликолиза переходит во фруктозо-1,6-дифосфат. Превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат катализируется фруктозодифосфатазой (рисунок 10.1, реакция 3).

Фруктозо-6-фосфат изомеризуется  в глюкозо-6-фосфат. Заключительной реакцией глюконеогенеза является гидролиз глюкозо-6-фосфата при участии  фермента глюкозо-6-фосфатазы (рисунок 10.1, реакция 4).

 

Рисунок 10.1. Обходные реакции глюконеогенеза.

Основными источниками  глюкозы в глюконеогенезе являются лактат, аминокислоты, глицерол и метаболиты цикла Кребса.

Лактат – конечный продукт анаэробного окисления глюкозы. Может включаться в глюконеогенез после окисления до пирувата в лактатдегидрогеназной реакции (см. раздел «Гликолиз», рисунок 3.4, реакция 11). При продолжительной физической работе основным источником лактата является скелетная мускулатура, в клетках которой преобладают анаэробные процессы. Накопление молочной кислоты в мышцах ограничивает их работоспособность. Это связано с тем, что при повышении концентрации молочной кислоты в ткани снижается уровень рН (молочнокислый ацидоз). Изменение рН приводит к ингибированию ферментов важнейших метаболических путей. В утилизации образующейся молочной кислоты важное место принадлежит глюкозо-лактатному циклу Кори (рисунок 10.2).

 

Рисунок 10.2. Цикл Кори и глюкозо-аланиновый цикл (пояснения в тексте).

Глюкогенные аминокислоты, к которым относятся большинство белковых аминокислот. Ведущее место в глюконеогенезе среди аминокислот принадлежит аланину, который может превращаться в пируват путём трансаминирования. При голодании, физической работе и других состояниях в организме функционирует глюкозо-аланиновый цикл, подобный циклу Кори для лактата (рисунок 10.2). Существование цикла аланин – глюкоза препятствует отравлению организма, так как в мышцах нет ферментов, утилизирующих аммиак. В результате тренировки мощность этого цикла значительно возрастает.

Другие аминокислоты могут, подобно  аланину, превращаться в пируват, а  также в промежуточные продукты цикла Кребса (α-кетоглутарат, фумарат, сукцинил-КоА). Все эти метаболиты способны преобразовываться в оксалоацетат и включаться в глюконеогенез.

Глицерол – продукт гидролиза липидов в жировой ткани. Этот процесс значительно усиливается при голодании. В печени глицерол превращается в диоксиацетонфосфат – промежуточный продукт гликолиза и может быть использован в глюконеогенезе.

Жирные кислоты и ацетил-КоА не являются предшественниками глюкозы. Окисление этих соединений обеспечивает энергией процесс синтеза глюкозы.

Энергетический баланс. Путь синтеза глюкозы из пирувата (рисунок 10.3) содержит три реакции, сопровождающиеся потреблением энергии АТФ или ГТФ:

а) образование оксалоацетата  из пирувата (затрачивается молекула АТФ);

б) образование фосфоенолпирувата  из оксалоацетата (затрачивается молекула ГТФ);

в) обращение первого  субстратного фосфорилирования – образование 1,3-дифосфоглицерата из 3-фосфоглицерата (затрачивается молекула АТФ).

Каждая из этих реакций повторяется дважды, так как для образования 1 молекулы глюкозы (С6) используются 2 молекулы пирувата (С3). Поэтому энергетический баланс синтеза глюкозы из пирувата составляет – 6 молекул нуклеозидтрифосфатов (4 молекулы АТФ и 2 молекулы ГТФ). При использовании других предшественников энергетический баланс биосинтеза глюкозы отличается.

 

 

 

 

 

 

 

 

 

Рисунок 10.3. Энергетический баланс биосинтеза глюкозы из лактата.

Регуляция глюконеогенеза. Скорость глюконеогенеза определяется доступностью субстратов – предшественников глюкозы. Увеличение концентрации в крови любого из предшественников глюкозы приводит к стимуляции глюконеогенеза.Некоторые метаболиты являются аллостерическими эффекторами ферментов глюконеогенеза. Например, ацетил-КоА в повышенных концентрациях аллостерически активирует пируваткарбоксилазу, катализирующую первую реакцию глюконеогенеза. Аденозинмонофосфат, наоборот, оказывает ингибирующее действие на фруктозодифосфатазу, а избыток глюкозы ингибирует глюкозо-6-фосфатазу.Гормон поджелудочной железы глюкагон, гормоны надпочечников адреналин и кортизол повышают скорость биосинтеза глюкозы в организме, увеличивая активность ключевых ферментов глюконеогенеза либо увеличивая концентрацию этих ферментов в клетках. Гормон поджелудочной железы инсулин способствует снижению скорости глюконеогенеза в организме.

Раздел 10.2

Биосинтез гликогена.

Гликоген – биополимер, состоящий из остатков глюкозы, он является компонентом всех тканей животных и человека (см. рисунок 3.1). Этот полисахарид служит основным источником энергии и резервом углеводов в организме. Содержание гликогена в различных органах зависит от физиологического состояния организма. Наиболее высокое содержание гликогена обнаруживается в печени (от 2 до 6% от массы органа). Хотя концентрация гликогена в мышцах значительно ниже (от 0,5 до 1,5%), однако в норме его количество в мышцах составляет 2/3 от общего его содержания в организме.Гликоген отличается значительным разнообразием по структуре и по относительной молекулярной массе. Молекулы его ветвисты. Глюкозные остатки образуют цепи, в которых они связаны между собой α-1,4-гликозидными связями. Разветвления образуются при помощи α-1,6-гликозидных связей. Большая часть глюкозы, поступающей в организм с пищей, превращается в клетках печени в гликоген. Это связано с тем, что накопление легко растворимой глюкозы в клетках привело бы к резкому увеличению осмотического давления и разрушению клеточной мембраны.

Молекула глюкозы фосфорилируется  при участии фермента глюкокиназы (в гепатоцитах) или гексокиназы (в других клетках) с образованием глюкозо-6-фосфата. Этот метаболит под влиянием фосфоглюкомутазы превращается в глюкозо-1-фосфат (рисунок 10.4, реакция 1).

Рисунок 10.4. Реакции биосинтеза гликогена.

Глюкозо-1-фосфат взаимодействует  с уридинтрифосфатом (УТФ) в присутствии  фермента УДФ-глюкозо-пирофосфорилазы с образованием УДФ-глюкозы – ключевого метаболита углеводного обмена (рисунок 10.4, реакция 2). Перенос глюкозного остатка с УДФ-глюкозы на затравочную полисахаридную цепь осуществляет гликогенсинтаза – регуляторный фермент данного метаболического пути (рисунок 10.4, реакция 3). Гликогенсинтаза существует в двух формах: гликогенсинтаза b (неактивная) и гликогенсинтаза а (активная). Превращение формы а в форму b катализируется цАМФ-зависимой протеинкиназой, обратный процесс – протеинфосфатазой. Образование α-1,6-гликозидных связей в молекуле гликогена катализирует ветвящий фермент или трансглюкозидаза (рисунок 10.5) .

 

Рисунок 10.5. Образование α-1,6-гликозидных связей в молекуле гликогена.

 

Раздел 10.3.

Мобилизация гликогена  и гликогенолиз.

1. Мобилизация, или распад гликогена – процесс превращения гликогена в глюкозу, происходящий в печени. Таким образом, распад гликогена в печени наряду с глюконеогенезом принимает участие в поддержании уровня глюкозы в крови.

 

Рисунок 10.6. Реакции мобилизации гликогена.

Первую реакцию внутриклеточного расщепления гликогена катализирует фермент фосфорилаза гликогена (рисунок 10.6, реакция 1). Простетической группой его является пиридоксальфосфат (производное витамина В6).

Фосфорилаза гликогена  – регуляторный фермент, он существует в двух формах: фосфорилаза а (активная) и фосфорилаза b (неактивная). Переход фосфорилазы b в фосфорилазу а катализирует киназа фосфорилазы, которая фосфорилирует неактивный фермент. Превращение фосфорилазы а в фосфорилазу b катализирует протеинфосфатаза, которая осуществляет дефосфорилирование активного фермента. Следует отметить, что ускорение процессов мобилизации гликогена происходит одновременно с торможением его биосинтеза, и наоборот. Активацию фосфорилазы гликогена вызывают гормоны адреналин и глюкагон.

Фосфорилаза расщепляет в молекуле гликогена лишь α-1,4-гликозидные  связи. Расщепление α-1,6-гликозидных связей осуществляется амило-1,6-гликозидазой гидролитически с образованием свободной глюкозы.

Глюкозо-1-фосфат, образующийся в фосфорилазной реакции, при  участии уже известного Вам фермента фосфоглюкомутазы переходит в глюкозо-6-фосфат (рисунок 10.6, реакция 2).

Дальнейшая судьба глюкозо-6-фосфата, образовавшегося при распаде  гликогена, в разных тканях различна.

Как уже упоминалось, в печени и почках имеется фермент глюкозо-6-фосфатаза, отщепляющая фосфат от глюкозо-6-фосфата (рисунок 10.6, реакция 3). Образовавшаяся глюкоза диффундирует в кровь, откуда поглощается клетками организма и служит для них источником энергии.

В мышечной ткани фермент  глюкозо-6-фосфатаза отсутствует. Поэтому  глюкозо-6-фосфат, образовавшийся при  распаде гликогена, подвергается дальнейшему превращению по гликолитическому пути с образованием лактата (этот процесс называется гликогенолизом). Образующийся в реакциях субстратного фосфорилирования АТФ используется в процессах мышечного сокращения. Таким образом, гликоген мышц является резервом энергии только для мышечной ткани.

Гликогенозы - наследственные заболевания, характеризующиеся отложением в тканях либо аномально больших количеств гликогена, либо необычных его видов. Такие нарушения содержания и структуры гликогена обусловлены врождённым дефицитом ферментов, участвующих в метаболизме гликогена. Примерами гликогенозов могут служить:

Гликогеноз I типа (болезнь Гирке) – дефицит глюкозо-6-фосфатазы в печени. Характеризуется повышенным содержанием гликогена в печени; содержание глюкозы в крови снижено, содержание пирувата и лактата в крови повышено.

Гликогеноз V типа (болезнь Мак-Ардля) – дефицит фосфорилазы в скелетных мышцах. У больных называется пониженная выносливость к физическим нагрузкам. В скелетных мышцах содержится аномально высокое количество гликогена. Тем не менее, после выполнения физической работы или после введения адреналина содержание лактата в крови не увеличивается.

Гликогеноз VI типа (болезнь Херса) – дефицит фосфорилазы в печени. Для этого заболевания характерно повышение содержания гликогена в печени, гипогликемия. После введения адреналина или глюкагона содержание лактата в крови не увеличивается (в отличие от гликогеноза I типа).

 

Раздел 10.4

Строение и функции  гетерополисахаридов.

К гетерополисахаридам (гликозаминогликанам) относятся биополимеры, состоящие из чередующихся остатков уроновых кислот и гексозаминов:


 

 

Основными представителями  гликозаминогликанов в организме  являются гиалуроновая кислота, хондроитин-4-сульфат, хондроитин-6-сульфат и гепарин (рисунок 10.7).

 

Рисунок 10.7. Формулы гликозаминогликанов.

Гиалуроновая  кислота состоит из остатков глюкуроновой кислоты и N-ацетил-глюкозамина, соединённых между собой β-1,3- и β-1,4-гликозидными связями.

Хондроитин-4-сульфат состоит из остатков глюкуроновой кислоты и N-ацетил-галактозамин-4-сульфата, соединённых между собой β-1,3- и β-1,4-гликозидными связями. В хондроитин-6-сульфате группа –OSO3H находится в 6-м положении галактозамина.

Гепарин состоит из остатков глюкуронат-2-сульфата и N-ацетил-глюкозамин-6-сульфата, соединённых между собой a-1,4-гликозидными связями. Может также содержать остатки идуроновой кислоты и большее число сульфатных групп в моносахаридных звеньях.

Гликозаминогликаны входят в состав межклеточного вещества соединительной ткани (гиалуроновая кислота), в том числе костной и хрящевой (хондроитинсульфаты); связывая воду и катионы, участвуют в регуляции водно-электролитного баланса; выполняют роль смазки, защищающей поверхность суставов и слизистых оболочек. Гепарин, синтезируемый тучными клетками, является антикоагулянтом (препятствует свёртыванию крови).

Синтезируются гликозаминогликаны из УДФ-производных уроновых кислот и гексозаминов. Катаболизм их происходит в лизосомах клеток.


Информация о работе Лекции по "Химии"