Автор работы: Пользователь скрыл имя, 01 Августа 2011 в 00:09, контрольная работа
1 Углеводы, их биологическая роль. Классификация углеводов.
2 МОНОСАХАРИДЫ (ГЛЮКОЗА, ФРУКТОЗА, ГАЛАКТОЗА, РИБОЗА, ДЕЗОКСИРИБОЗА).
3 Основные реакции моносахаридов (окисление, восстановление, образование фосфорных эфиров, гликозидов, аминосахаридов) и биололгическое значение этих реакций.
4 Дисахариды (сахароза, мальтоза, лактоза, целлобиоза), строение, источники, ферментативный гидролиз.
5 Резервные полисахариды (крахмал, гликоген, инулин), строение, источники, ферментативный гидролиз.
6 Структурнуе полисахариды
1 Углеводы, их биологическая роль. Классификация углеводов.
Углеводы наряду с белками и липидами являются важнейшими химическими соединениями, входящими в состав живых организмов. У человека и животных углеводы выполняют важные функции: энергетическую, структурную и защитную.
При окислении углеводов выделяется значительное количество энергии, которая накапливается в виде АТФ.
Углеводы (рибоза и дезоксирибоза) используются для синтеза нуклеиновых кислот, они являются составными компонентами нуклеиновых коферментов, играющих исключительно важную роль в метаболизме у живых существ.
Промежуточные продукты распада углеводов служат исходными веществами для синтеза других соединений, необходимых живой клетке.
С нарушением обмена углеводов тесно связан ряд заболеваний: сахарный диабет, галактоземия и т.д.
На долю углеводов приходится 60-70% пищевого рациона. Они содержатся преимущественно в растительных продуктах, являются основными компонентами хлеба, круп, макарон, кондитерских изделий, служат сырьем в бродильной промышленности, в производстве пищевых кислот: уксусной, молочной, лимонной.
Классификация углеводов основана на структуре и физико-химических свойствах.
Углеводы подразделяются на три основные группы: моносахариды, олигосахариды и полисахариды.
Моносахариды (простые сахара) – углеводы, которые не способны гидролизоваться до более простых соединений.
Олигосахариды (низкомолекулярные сахара) – углеводы, которые при гидролизе распадаются на 2-8 моносахарида («олигос» – по-гречески немногий).
Полисахариды (сложные сахара) – продукты конденсации моносахаридов, они способны гидролизоваться с образованием простых углеводов (от десятков до сотен тысяч молекул моносахаридов).
По химической природе простые сахара делят на: а) нейтральные сахара, содержащие только карбонильную и спиртовую группы; б) аминосахара, содержащие кроме этих групп аминогруппу, которая придает этим соединениям основные свойства; в) кислые сахара, содержащие кроме карбонильной и спиртовых групп карбоксильные группы.
Моносахариды (монозы) классифицируют по количеству атомов углерода и по характеру карбонильной группы.
По количеству атомов углерода различают: триозы – сахара с тремя атомами углерода, тетрозы – с четырьмя, пентозы – с пятью, гексозы – с шестью и т.д. Сахара, содержащие семь и более атомов углерода, называют высшими сахарами.
Моносахариды,
содержащие альдегидную группу, называют
альдозами, кетонную – кетозами. Часто
эти названия объединяют, чтобы одновременно
показать и число углеродных атомов, и
характер карбонильной группы. Например:
глюкоза является альдогексозой, а фруктоза
– кетогексозой.
Д-рибоза
Д-рибоза и Д-2-дезоксирибоза входят в состав нуклеиновых кислот, нуклеотидов. Производное рибозы – спирт рибит – является составной частью некоторых витаминов и ферментов.
Важнейшими и широко представленными в природе гексозами являются глюкоза, фруктоза, галактоза, манноза.
В свободном виде Д-глюкоза содержится в зеленых частях растений, семенах, различных фруктах и ягодах, меде. Входит в состав крахмала, клетчатки, гемицеллюлоз, гликогена, декстринов, сахарозы, мальтозы, рафинозы, многих глюкозидов.
Глюкозу в больших количествах получают путем кислотного гидролиза картофельного или кукурузного крахмала, при этом глюкоза составляет основную массу патоки, широко применяемой в кондитерском производстве. Глюкоза хорошо сбраживается дрожжами.
Д-фруктоза содержится во всех зеленых растениях, в нектаре цветов, меде. Особенно ее много в плодах, поэтому ее второе название – плодовый сахар. Фруктоза гораздо слаще других сахаров. В виде Д-фруктофуранозы входит в состав сахарозы, а также высокомолекулярных полисахаридов, образующих при гидролизе фруктозу. Эти полисахариды, получившие название полифруктозидов, встречаются в значительных количествах во многих растениях, особенно семейства сложноцветных: цикорий, земляная груша, кок-сагыз и др. Наиболее известен инулин, накапливающийся в качестве запасного углевода в клубнях земляной груши.
Сбраживается дрожжами.
Д-галактоза встречается в качестве составной части некоторых дисахаридов – лактозы (молочного сахара), мелибиозы и содержащегося в растениях трисахарида – рафинозы. Входит в состав многих высокомолекулярных полисахаридов: употребляемого в кондитерской промышленности агар-агара, различных гумми и слизей, а так же гемицеллюлоз.
Галактоза
сбраживается лишь так называемыми
«лактозными дрожжами».
3 Основные реакции моносахаридов (окисление, восстановление, образование фосфорных эфиров, гликозидов, аминосахаридов) и биололгическое значение этих реакций.
Моносахариды, являясь альдо- или кетоспиртами, проявляют все свойства альдегидов, кетонов и спиртов.
Образование гликозидов
В результате взаимодействия гликозидного гидроксила моносахарида со спиртами, образуются соединения типа простых эфиров, которые называются гликозидами:
Вновь образовавшаяся связь называется гликозидной.
Гликозидная связь имеет очень важное биологическое значение. С помощью этой связи осуществляется ковалентное связывание моносахаридов в составе олиго- и полисахаридов:
Гликозиды широко распространены в растениях, они часто обладают специфическим запахом и вкусом.
Гидролиз
гликозидов лежит в основе гидролитического
расщепления полисахаридов, осуществляемого
в организме, а также используется
во многих промышленных процессах.
Образование сложных эфиров
Моносахариды, реагируя с кислотами, могут давать сложные эфиры. Из производных сахаров наиболее важное биологическое значение имеют эфиры фосфорной кислоты.
В клетке эти производные легко образуются при ферментативных реакциях:
Донором фосфорной кислоты
Фосфорилирование моносахаридов переводит их в мобильное реакционно-способное состояние, а при их биологическом окислении химическая энергия моносахарида аккумулируется в фосфатном радикале.
Фосфорилирование
выгодно клетке еще и потому, что клеточная
мембрана малопроницаема для фосфорных
эфиров моносахаридов, что очень важно
для активного транспорта моносахаридов
из внешней среды внутрь клетки.
Окисление моносахаридов
При химическом или
Эта
реакция успешно используется в
методах количественного
Если окислению подвергается концевая группа –СН2ОН, то при этом образуются уроновые кислоты:
Уроновые кислоты играют большую роль в качестве промежуточных продуктов при образовании пентоз из гексоз.
При действии сильных окислителей окисляются обе концевые группы до карбоксильной, образуются альдаровые кислоты – глюкаровая, галактаровая и т.д., биологическая роль которых не установлена:
Карбонильная группа моносахаридов легко вступает в реакции восстановления с образованием сахароспиртов. В клетках растений, микроорганизмов это восстановление осуществляется при помощи ферментов (НАД – зависимых дегидрогеназ).
Простейшим сахароспиртом является трехатомный спирт глицерин, образующийся при восстановлении глицеральдегида. Глюкоза при восстановлении дает шестиатомный сахароспирт сорбит, галактоза – дульцит, манноза – манит:
Сорбит часто встречается в различных фруктах, ягодах: в рябине, сливах, абрикосах, вишнях и др. Дульцит содержится во многих растениях, выделяется на поверхности коры деревьев. Манит содержится в бурых водорослях; плодах (ананас), овощах (морковке, луке).
Аминосахара
Аминосахара
– это производные моносахаридов, гидроксильная
группа
(–ОН) которых замещена аминогруппой (–NH2).
Аминосахара обладают всеми свойствами аминов, обычных моносахаридов, а также специфическими свойствами, обусловленными пространственной близостью гидроксильных и аминных групп.
В организме человека и животных наиболее важными аминосахарами являются Д-глюкозамин и Д-галактозамин.
Аминогруппа может быть ацилирована:
Аминосахара
играют важную роль в синтезе полисахаридов
клеточных стенок, мембран бактерий.
4 Дисахариды (сахароза, мальтоза, лактоза, целлобиоза), строение, источники, ферментативный гидролиз.
К широко распространенным и имеющим важное значение как компоненты пищевых продуктов, относятся дисахариды: сахароза, лактоза, мальтоза и др.
По химическому строению дисахариды являются гликозидами моносахаридов. Большинство дисахаридов состоят из гексоз, но в природе известны дисахариды, состоящие из одной молекулы гексозы и одной молекулы пентозы.
При образовании дисахарида одна молекула моносахарида всегда образует связь со второй молекулой с помощью своего полуацетального гидроксила. Другая молекула моносахарида может соединяться либо также полуацетальным гидрокислом, либо одним из спиртовых гидроксилов. В последнем случае в молекуле дисахарида будет оставаться свободным один полуацетальный гидроксил. В природе встречаются все виды гликозидных связей: a(1®3), a(1®2), b(1®6), b(1®1) и т.д.
Мальтоза
Мальтоза – резервный олигосахарид– обнаружена во многих растениях в небольших количествах, в больших количествах накапливается в солоде – обычно в семенах ячменя, проросших в определенных условиях. Поэтому мальтозу часто называют солодовым сахаром. Мальтоза образуется в растительных и животных организмах в результате гидролиза крахмала под действием амилаз.
Мальтоза содержит два остатка Д-глюкопиранозы, соединенных между собой a(1®4)гликозидной связью.
Мальтоза обладает восстанавливающими свойствами, что используется при ее количественном определении. Она легко растворима в воде. Раствор обнаруживает мутаротацию.
Под
действием фермента a-глюкозидазы (мальтазы) солодовый
сахар гидролизуется с образованием двух
молекул глюкозы: