Электрохимические методы анализа и очистки воды

Автор работы: Пользователь скрыл имя, 22 Ноября 2012 в 19:18, курсовая работа

Краткое описание

Наиболее широко распространенные в мире методы очистки воды и отработанных водных растворов основаны на моделировании природных процессов - фильтрации, сорбции, ионного обмена. Однако, установки в которых реализованы указанные процессы, нуждаются в регенерации и периодической замене основного рабочего элемента: фильтров, сорбентов, ионообменных смол.
Цель данной работы – рассмотреть электрохимические методы анализа и очистки сточных вод, определить их особенности и преимущества над другими методами.

Содержание работы

1.Введение…………………………………………………………………………………..….2
2. Электрохимические методы анализа воды……………………………………………..…3
2.1 Классификация электрохимических методов анализа ………………………….…3
2.2 Потенциометрия. Потенциометрическое титрование……………………………...4
2.3 Кондуктометрия. Кондуктометрическое титрование………………………………7
2.4 Кулонометрия. Кулонометрическое титрование……………………………………9
3. Электрохимические методы очистки воды………………………………………………..11
3.1 Теоретические основы электрохимических методов очистки ………………….....11
3.2 Анодное окисление и катодное восстановление………………………………….....12
3.3 Электрокоагуляция………………………………………………………………….....15
3.4 Электрофлотация………………………………………………………………………18
3.5 Электродиализ………………………………………………………………………....19
4. Заключение…………………………………………………………………………………...21
5. Список литературы…………………………………………………………………………..22

Содержимое работы - 1 файл

Электрохимические методы анализа и очистки воды.doc

— 299.50 Кб (Скачать файл)

При окислительно-восстановительном  титровании применяют электрод сравнения  и платиновый индикаторный электрод, чувствительный к окислительно-восстановительным парам.

Потенциометрическое титрование – один из наиболее употребляемых  методов инструментального анализа  вследствие простоты, доступности, селективности  и широких возможностей.

 

2.3 Кондуктометрия. Кондуктометрическое титрование

Кондуктометрия основана на измерении электрической проводимости раствора. Если в раствор вещества поместить два электрода и  подать на электроды разность потенциалов, то через раствор потечет электрический  ток. Как и каждый проводник электричества, растворы характеризуются сопротивлением R и обратной ему величиной – электрической проводимостью L:

                   

Кондуктометрический  анализ проводят с помощью кондуктометров – приборов, измеряющих сопротивление  растворов. По величине сопротивления R определяют обратную ему по величине электрическую проводимость растворов L.

Определение концентрации растворов осуществляют прямой кондуктометрией  и кондуктометрическим титрованием. Прямая кондуктометрия используется для определения концентрации раствора по калибровочному графику. Для составления калибровочного графика замеряют электропроводимость серии растворов с известной концентрацией и строят калибровочный график зависимости электрической проводимости от концентрации. Затем измеряют электропроводимость анализируемого раствора и по графику определяют его концентрацию.

Чаще применяют кондуктометрическое титрование. При этом в ячейку с электродами помещают анализируемый раствор, ячейку помещают на магнитную мешалку и титруют соответствующим титрантом. Титрант добавляют равными порциями. После добавления каждой порции титранта замеряют электропроводимость раствора и строят график зависимости между электропроводимостью и объемом титранта. При добавлении титранта происходит изменение электропроводимости раствора в т.э. наступает перегиб кривой титрования.

От подвижности ионов зависит электропроводимость раствора: чем выше подвижность ионов, тем больше электропроводимость раствора.

Кондуктометрическое титрование обладает рядом преимуществ. Его можно проводить в мутных и окрашенных средах, в отсутствии химических индикаторов. Метод обладает повышенной чувствительностью и позволяет анализировать разбавленные растворы веществ (до 10-4 моль/дм3). Кондуктометрическим титрованием анализируют смеси веществ, т.к. различия в подвижности различных ионов существенны и их можно дифференцированно оттитровывать в присутствии друг друга.

Кондуктометрический анализ легко автоматизировать, если раствор  титранта подавать из бюретки с постоянной скоростью, а изменение электрической проводимости раствора регистрировать на самописце. Эта разновидность кондуктометрии получила название хронокондуктометрического анализа.

В кислотно-основном титровании кондуктометрическим путем можно  определять сильные кислоты, слабые кислоты, соли слабых оснований и сильных кислот.

В осадительном кондуктометрическом титровании электропроводимость титруемых растворов сначала уменьшается или остается на некотором постоянном уровне вследствие связывания титруемого электролита в осадок, после т.э. при появлении избытка титранта – снова возрастает.

В комплексометрическом кондуктометрическом титровании изменения электропроводимости раствора наступают вследствие связывания катионов металла в комплекс с ЭДТА.

Окислительно-восстановительное кондуктометрическое титрование основано на изменении концентрации реагирующих ионов и появлении в растворе новых ионов, что изменяет электропроводимость раствора.

В последние годы получило развитие высокочастотная кондуктометрия, в которой электроды с раствором не контактируют, что важно при анализе агрессивных сред и растворов в закрытых сосудах.

Получила развитие два варианта – прямая высокочастотная кондуктометрия и высокочастотное титрование.

Прямая высокочастотная кондуктометрия применяется для определения влажности веществ, зерна, древесины, концентрации растворов в закрытых сосудах – ампулах, при анализе агрессивных жидкостей.

Высокочастотное титрование проводят на специальных титраторах – ТВ-6, ТВ-6Л.

Высокочастотное кондуктометрическое  титрование проводят по типу кислотно-основного, окислительно-восстановительного или осадительного титрования в тех случаях, когда отсутствует подходящий индикатор или при анализе смесей веществ.

 

2.4 Кулонометрия. Кулонометрическое титрование

В кулонометрии вещества определяют измерением количества электричества, затраченное на их количественное электрохимическое превращение. Кулометрический анализ проводят в электролитической ячейке, в которую помещают раствор определяемого вещества. При подаче на электроды ячейки соответствующего потенциала происходит электрохимическое восстановление или окисление вещества. Согласно законам электролиза, открытым Фарадеем, количество вещества, прореагировавшего на электроде, пропорционально количеству электричества, прошедшего через раствор:

 

Кулонометрический анализ позволяет определять вещества, не осаждающиеся на электродах или улетучивающиеся  в атмосферу при электрохимической  реакции.

Различают кулонометрию прямую и кулонометрическое титрование. Высока точность и чувствительность методов измерения электрического тока обеспечивает кулонометрическому анализу уникальную точность 0,1-0,001%, и чувствительность до 1∙10-8 г. Поэтому кулонометрический анализ применяется для определения микропримесей и продуктов разрушения веществ, что важно при контроле их качества.

Для индикации т.э. при кулонометрическом  титровании можно применять химический и инструментальные методы – добавление индикаторов, обнаружение окрашенных соединений фотометрическим или  спектрофотометрическим путём.

В отличии от других методов анализа кулонометрия может  быть полностью автоматизирована, что сводит к минимуму случайные ошибки определения. Эта особенность использована при создании автоматических кулонометрических титраторов – чувствительных приборов, применяющихся для особо точных анализов, когда другие методы оказываются недостаточно чувствительными. При анализе веществ, малорастворимых в воде, кулонометрию можно проводить на электродах из ацетиленовой сажи, являющиеся хорошим адсорбентом и извлекающий такие вещества из реакционной среды с достаточной полнотой. Кулонометрическое титрование – перспективный метод инструментального анализа. Он может найти широкое применение для решения ряда специальных аналитических задач – анализа примесей, малых количеств лекарственных препаратов, определение в биологическом материале и окружающей среде токсических веществ, микроэлементов и других соединений.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    1. Электрохимические методы очистки воды

 

    1. Теоретические характеристики электрохимических методов очистки

 

Для очистки сточных  вод от различных растворимых и диспергированных примесей применяют процессы анодного окисления и катодного восстановления, электрокоагуляции, электрофлокуляции и электродиализа. Все эти процессы протекают на электродах при пропускании через сточную воду постоянного электрического тока. Электрохимические методы позволяют извлекать из сточных вод ценные продукты при относительно простой автоматизированной технологической схеме очистки, без использования химических реагентов. Основным недостатком этих методов является большой расход электроэнергии.

Очистку сточных вод  электрохимическими методами можно  проводить периодически или непрерывно.

Эффективность электрохимических  методов оценивается рядом факторов: плотностью тока, напряжением, коэффициентом  полезного использования напряжения, выходом по току, выходом по энергии. Плотность тока — это отношение тока к поверхности электрода, которое обычно выражают в А/м2 (А/см2, А/дм2). Напряжение электролизера складывается из разности электродных потенциалов и падения напряжения в растворе:

где Dla и Dlk — величина анодной и катодной поляризации; la и lк — равновесные потенциалы анода и катода; DUэл и DUдиаф — падение напряжения в электролите и диафрагме.

Падение напряжения в  электролите (сточной воде) при отсутствии пузырьков газа определяют по закону Ома:

DUэл =ipd  ,

где i — плотность тока в сточной воде. А/см2; р — удельное сопротивление. Ом-см; d — расстояние между электродами, см.

При выделении газовых пузырьков, вследствие удлинения потока между электродами DUэл. возрастает. Отношение:

hнапр.=( la - lк )U,

называют коэффициентом  полезного использования напряжения.

Выход по току — это отношение теоретически необходимого количества электричества (находят по закону Фарадея) к практически затраченному, которое выражают в долях единицы или в процентах.

    1. Анодное окисление и катодное восстановление

В электролизере, на положительном  электроде — аноде ионы отдают электроны,   т. е. протекает реакция электрохимического окисления; на отрицательном электроде — катоде происходит присоединение электронов, т. е. протекает реакция восстановления.

Эти процессы разработаны  для очистки сточных вод от растворенных примесей (цианидов, роданидов, аминов, спиртов, альдегидов, нитросоединений, азокрасителей, сульфидов, меркаптанов и др.). В процессах электрохимического окисления вещества, находящиеся в сточных водах, полностью распадаются с образованием СО2, NНз и воды или образуются более простые и нетоксичные вещества, которые можно удалять другими методами.

В качестве анодов используют различные электролитически нерастворимые  материалы: графит, магнетит, диоксиды свинца, марганца и рутения, которые  наносят на титановую основу.

Катоды изготовляют  из молибдена, сплава вольфрама с железом или никелем, из графита, нержавеющей стали и других металлов, покрытых молибденом, вольфрамом или их сплавами. Процесс проводят в электролизерах с диафрагмой и без нее. Кроме основных процессов электроокисления и восстановления, одновременно могут протекать электрофлотация, электрофорез и электрокоагуляция.

Сточные воды, содержащие цианиды, образуются на предприятиях машиностроения, приборостроения, черной и цветной  металлургии, химической промышленности и др. В состав вод кроме простых цианидов (KCN, NaCN) входят комплексные цианиды цинка, меди, железа и других металлов, концентрация которых колеблется от 10 до 600 мг/л. Обычно рН таких стоков колеблется в пределах 8—12.

Анодное окисление цианидов протекает по реакциям:

Окисление может быть проведено и с образованием азота:

Для повышения электропроводности сточных вод и снижения расхода энергии к водам добавляют NaCl. При концентрации CN- 1 г/л добавляют 20—30 г/л NaCl. В этом процессе используют графитовый анод и стальной катод. Оптимальные условия окисления: анодная плотность тока 3—4 А/дм2, межэлектродное пространство 3 см, скорость воды 30 дм3/ч, рН 8—9. Степень очистки приближается к 100%.

Разрушение цианидов происходит в результате электрохимического окисления на аноде и окисления  хлором, выделяющимся на аноде в результате разложения NaCl. Этот процесс описывается следующими реакциями:

Схема установки для  электрохимической очистки сточных  вод от цианидов приведена на рис. 1

 

Рис.1. Схема установки электрохимической очистки сточных вод от цианидов соединений:

1 - усреднитель: 2 - бак для приготовления раствора хлорида натрия:

3 - электролизер; 4 - источник постоянного тока

При использовании электролизеров проточного типа целесообразно разделять их перегородками на несколько отсеков. В процессе электролиза сточные воды перемешивают сжатым воздухом. Обработанные сточные воды содержат до 200 мг/л активного хлора и должны быть обезврежены. Металлы, которые выделяются на катоде, утилизируют. Установка компактна и проста в эксплуатации.

Роданиды разрушаются по схеме:

Сульфид-ионы при рН=7 окисляются до сульфатов. При меньших  значениях рН может образоваться элементная сера. Окисление фенолов  в присутствии хлоридов в сточной  воде протекает по следующим реакциям (этот процесс выгоден при небольшом содержании фенолов в воде):

 

 

Катодное восстановление применяют для удаления из cточных вод ионов металлов с получением осадков, для перевода загрязняющего компонента в менее токсичные соединения или в легко выводимую из воды форму (осадок, газ). Его можно использовать для очистки сточных вод от ионов тяжелых металлов Pb2+, Sn2+, Hg2+, Cu2+, As3+, Cr6+. Катодное восстановление металлов происходит по схеме:

При этом металлы осаждаются на катоде и могут быть рекуперированы. Например, при восстановлении соединений хрома была достигнута высокая степень очистки: концентрация снижалась с 1000 до 1 мг/л. Расход электроэнергии на очистку составил 0,12 кВт-ч/м3. При электролизе сточных вод, содержащих Н2СrО7, оптимальное значение рН=2, а плотность тока 0,2—2 А/дм2. Реакция восстановления протекает следующим образом:

Очистку сточных вод  от ионов Hg2+, Pb2+, Cd2+, Cu2+ проводят на катодах, состоящих из смеси угольного и сернистого порошков в соотношении C:S от 80:20 до 20:80 при рН<7 и плотности тока 2,5 А/дм2. Осаждение этих ионов происходит в виде нерастворимых сульфидов или бисульфидов, которые удаляют механически.

Информация о работе Электрохимические методы анализа и очистки воды