Химико-технологическая система

Автор работы: Пользователь скрыл имя, 11 Февраля 2013 в 15:50, курсовая работа

Краткое описание

Химическое производство состоит из десятков и сотен разнородных аппаратов и устройств, связанных между собой разнообразными потоками. Исследовать его в целом при огромном многообразии его составных частей – задача не только сложная, но и малоэффективная. Представив химическое производство как химико-технологическую систему, проведем дальнейшую систематизацию частей производства, представленных в структуре ХТС. Цель систематизации – выделить подсистемы ХТС для их исследования и изучения. Будем выделять подсистемы по двум признакам – функциональному и масштабному.

Содержимое работы - 1 файл

Курсовая работа Зайдуллина Динара.doc

— 281.50 Кб (Скачать файл)

Министерства  и Образования Республики Казахстан

Казахский Университет Технологии и Бизнеса

 

 

 

 

 

«Основы проектирования и оборудование предприятий»

 

 

Тема: Химико-технологическая система

 

 

Выполнила: Зайдуллина.Д ХТОВ ДОТ 3курс

Проверила: Ыбырай.А

 

 

 

 

 

 

 

 

 

Астана – 2013г

 

Химико-технологическая  система

 

Химическое производство состоит из десятков и сотен разнородных  аппаратов и устройств, связанных  между собой разнообразными потоками. Исследовать его в целом при  огромном многообразии его составных  частей – задача не только сложная, но и малоэффективная. Представив химическое производство как химико-технологическую систему, проведем дальнейшую систематизацию частей производства, представленных в структуре ХТС. Цель систематизации – выделить подсистемы ХТС для их исследования и изучения. Будем выделять подсистемы по двум признакам – функциональному и масштабному.

Функциональные подсистемы обеспечивают выполнение функций производства и его функционирования в целом.

Технологическая подсистема – часть производства, где осуществляется собственно переработка сырья в продукты, химико-технологический процесс.

Энергетическая подсистема – часть производства, служащая для обеспечения энергией химико-технологического процесса. В зависимости от вида энергии: тепловая, силовая, электрическая – может быть представлена соответствующая подсистема.

Подсистема управления – часть производства для получения  информации о его функционировании и для управления им. Обычно это  – автоматизированная система управления технологическим процессом (АСУТП).

Примерно так же функциональные подсистемы представлены в технической  документации по производству. Напомним, что в зависимости от цели исследований каждая из подсистем может быть представлена несколькими видами. Совокупность функциональных подсистем образует состав ХТС.

Масштабные подсистемы выполняют определенные функции в последовательности процессов переработки сырья в продукты как отдельные части химико-технологического процесса. Как и в структуре математической модели процесса в реакторе, масштабные подсистемы ХТС также можно систематизировать в виде их иерархической последовательности – иерархической структуры ХТС (рис. 3.1).

В структуре ХТС минимальный  элемент – отдельный аппарат (реактор, абсорбер, ректификационная колонна, насос и прочее). Это – низший масштабный уровень I. Несколько аппаратов, выполняющих вместе какое-то преобразование потока, – элементы подсистемы II масштабного уровня (реакционный узел, система разделения многокомпонентной смеси и т.д.). Совокупность подсистем второго уровня как элементы образуют подсистему III уровня (отделения или участки производства, например в производстве серной кислоты – отделения обжига серосодержащего сырья, очистки и осушки сернистого газа, контактное, абсорбционное, очистки отходящих газов). К этим же подсистемам могут относиться водоподготовка, регенерация отработанных вспомогательных материалов, утилизация отходов. Совокупность отделений, участков образует ХТС производства в целом. Описанное выделение подсистем условно. В каких-то задачах выделение подсистем, элементов может быть иным.

 

Иерархическая структура  химико-технологической системы

Иерархическая структура  ХТС позволяет на каждом этапе  сократить размерность исследуемой  задачи, а результаты изучения подсистемы одного производства использовать в исследованиях другого. Иерархическую последовательность масштабных подсистем можно выделить также в функциональных подсистемах.

Проведем дальнейшую систематизацию элементов ХТС. В  описанной иерархической структуре  отдельные аппараты или агрегаты предназначены для определенного изменения состояния потока.

Классификация элементов  ХТС проводится по их назначению.

Механические и гидромеханические  элементы производят изменение формы  и размера материала и его  перемещение, объединение и разделение потоков. Эти операции осуществляются дробилками, грануляторами, смесителями, сепараторами, фильтрами, циклонами, компрессорами, насосами.

Теплообменные элементы изменяют температуру потока, его  теплосодержание, переводят вещества в другое фазовое состояние. Эти операции осуществляют в теплообменниках, испарителях, конденсаторах, сублиматорах.

Массообменные элементы осуществляют межфазный перенос компонентов, изменение компонентного состава  потоков без появления новых  веществ. Эти операции проводят в  дистилляторах, абсорберах, адсорберах, ректификационных колоннах, экстракторах, кристаллизаторах, сушилках.

Реакционные элементы осуществляют химические превращения, кардинально меняют компонентный состав потоков и материалов. Эти  процессы происходят в химических реакторах.

Энергетические элементы осуществляют преобразование энергии и получение  энергоносителей. К ним относят  турбины, генераторы, приводы для  выработки механической энергии, котлы-утилизаторы  для выработки энергетического  пара.

Элементы контроля и управления позволяют измерить параметры состояния потоков, контролировать состояние аппаратов и машин, а также управлять процессами, меняя условия их протекания. К ним относятся датчики (температуры, давления, расхода, состава и т.д.), исполнительные механизмы (вентили, задвижки, выключатели и т.д.), а также приборы для выработки и преобразования сигналов, информационные и вычислительные устройства. Как правило, это устройства сигнализации, системы автоматического регулирования, автоматическая система управления химико-технологическим процессом.

В каждом из перечисленных элементов  могут протекать разнообразные  процессы и в каждый из них могут  входить как составные части  различные по назначению устройства. В реакционный узел кроме реактора входят теплообменные аппараты и гидромеханические устройства (смесители, распределители потоков). Классифицировать такой агрегат будем по его основному назначению – реакционный элемент технологической подсистемы. Но в энергетической подсистеме возможна утилизация теплоты реакции для подогрева воды в общей системе выработки энергетического пара. Тогда в энергетической подсистеме реакционный узел будет теплообменным элементом, источник тепла которого – результат химической реакции (сравните: в огневом подогревателе тоже протекает химическая реакция – горение, или окисление, топлива).

Как видим, в зависимости от изучаемой  подсистемы один и тот же элемент  может иметь разное назначение. Котел-утилизатор охлаждает поток в технологической  подсистеме, он – теплообменный  элемент. В энергетической подсистеме котел-утилизатор вырабатывает пар и потому он – энергетический элемент.

Возможно совмещение элементов  по их назначению в одном устройстве, например реактор-ректификатор: в нем  одновременно происходит и химическое превращение, и компонентное разделение смеси (массообменный элемент).

Несмотря на относительность признаков  назначения элементов ХТС, приведенная классификация элементов позволяет проводить исследования более систематично.

Классификация связей (потоков). Потоки между аппаратами (связи между элементами) классифицируют по их содержанию:

Материальные потоки переносят  вещества и материалы по трубопроводам  различного назначения, транспортерами и другими механическими устройствами.

Энергетические потоки переносят  энергию в любом ее проявлении – тепловую, механическую, электрическую, топливо. Тепловая энергия и топливо для энергетических элементов передаются обычно по трубопроводам (пар, горячие потоки, горючие газы и жидкости), механическая энергия – также по трубопроводам (в виде газов под давлением) или через вал двигателей и другие элементы привода. Провода, силовые кабели передают электрическую энергию.

Информационные потоки используются в системах контроля и управления процессами и производством. Используются электрические провода и тонкие, капиллярные, трубки в пневматических системах.

Структура связей. Последовательность прохождения потоков через элементы ХТС определяет структуру связей и обеспечивает необходимые условия работы элементов системы. Основные типы структуры связей показаны на рис. 3.2. Здесь прямоугольники представляют элементы, линии со стрелками – связи и направления потоков.

Последовательная связь (схема 1 на рис. 3.2). Поток проходит аппараты поочередно. Применение: последовательная переработка сырья в разных операциях, более полная переработка сырья последовательными воздействиями на него, управление процессом путем необходимого управляющего воздействия на каждый элемент.

Разветвленная связь (схема 2 на рис. 3.2). После некоторой операции поток разветвляется и далее отдельные потоки перерабатываются различными способами. Используется для получения разных продуктов.

 

Связи в химико-технологической  системе: 1 – последовательная; 2 – разветвленная; 3 – параллельная; 4, 5 – обводная (байпас) простая (4) и сложная (5)\ 6 обратная (рециркуляционная) – рецикл полный (6, 9) и фракционный (7, А), простой (6) и сложный (9)

 

Параллельная связь (схема 3 на рис. 3.2). Поток разветвляется, отдельные части его проходят через разные аппараты, после чего потоки объединяются. Если мощность некоторых аппаратов ограничена, то устанавливают несколько аппаратов параллельно, обеспечивая суммарную производительность всей системы. Другое применение такой связи – использование периодических стадий в непрерывном процессе. В этом случае поочередно работает один из параллельных аппаратов. После завершения рабочего цикла одного аппарата поток переключают на другой аппарат, а отключенный подготавливают к очередному рабочему циклу. Так включены адсорберы с коротким сроком службы сорбента. Пока в одном из них происходит поглощение, в другом сорбент регенерируют. Еще одно назначение параллельной схемы – резервирование на случай выхода из строя одного из аппаратов, когда такое нарушение может привести к резкому ухудшению работы всей системы и даже к аварийному состоянию. Такое резервирование называют «холодным», в отличие от резервирования, обусловленного периодичностью процесса, – «горячего».

Обводная связь, или  байпас (схемы 4 и 5 на рис. 3.2). Часть потока, не поступая в аппарат, «обходит» его. Такая схема используется в основном для управления процессом. Например, в процессе эксплуатации теплообменника условия передачи теплоты в нем меняются (загрязнения поверхности, изменение нагрузки). Поддерживают необходимые температуры потоков байпасированием их мимо теплообменника. Величину байпаса р определяют как долю основного потока, проходящего мимо аппарата: р = Vб/Vо (обозначения потоков показаны на рис. 3.2). Различают простой (схема 4) и сложный (схема 5) байпасы.

Обратная связь, или  рецикл (схемы 6–9 на рис. 3.2). Часть потока после одного из аппаратов возвращается в предыдущий. Через аппарат, в который направляется поток Vp, проходит поток V больший, чем основной Vо, так что V = Vo+ Vp. Количественно величину рецикла характеризуют двумя величинами: кратностью циркуляции Кр= V/Vо и отношением циркуляции R = Vp/V Очевидно, R= (Кр – 1)/Кр.

Если выходящий из аппарата поток разветвляется, и  одна его часть образует обратную связь (схема б), то такая связь  образует полный рецикл – составы выходящего потока и рециклирующего одинаковы. Такую схему используют для управления процессом, создания благоприятных условий для его протекания. В цепных реакциях скорость превращения возрастает по мере накопления промежуточных активных радикалов. Если на вход реактора вернуть часть выходного потока, содержащего активные радикалы, то превращение будет интенсивным с самого начала.

Возможен возврат (рецикл) части компонентов после системы разделения Р (схема 7). Это – фракционный рецикл (возвращается фракция потока). Широко применяется для более полного использования сырья. В синтезе аммиака в реакторе превращается около 20% азотоводородной смеси. После отделения продукта – аммиака – непрореагировавшие азот и водород возвращают в реактор. При неполном превращении реакционной смеси в реакторе в схеме с фракционным рециклом достигается полное превращение исходного вещества. Фракционный рецикл используют также для полного использования вспомогательных материалов. В производстве аммиака азотоводородная смесь получается с большим содержанием С02. Его абсорбируют раствором моноэтаноламина (МЭА), который быстро насыщается диоксидом углерода. Насыщенный раствор МЭА рециркулирует через десорбер, где отделяется С02 и восстановленный моноэтаноламин возвращается в абсорбер. К фракционному рециклу можно отнести схему 8. Свежая смесь нагревается в теплообменнике теплом выходящего из реактора потока. Рециркулирует тепловая фракция потока (а не компонентная, как в схеме 7).

Схемы 6–8 представляют собой простой рецикл, а схема 9 – сложный.

Приведенные выше типы связей присутствуют практически во всех ХТС, обеспечивая необходимые условия их функционирования.

Исследование системы, в том числе ХТС, предполагает, что вначале она будет представлена моделью. Уже из определения системы  как совокупности элементов и связей между ними представляется целесообразным представить ее в виде схемы, графически. С другой стороны, качественные и количественные показатели ее функционирования могут быть отражены словесным и математическим описаниями (моделями) происходящих в них процессов (здесь понятие модели трактуется несколько шире, чем было строго определено в разделе «Математическое моделирование»: описание процесса, его схема – также модели ХТС). Модели ХТС можно разделить на две группы: описательные (в виде формул, уравнений) и графические (в виде схем и других графических изображений). В каждой из названных групп также можно выделить несколько видов моделей, различающихся по форме и назначению:

А. Описательные модели: химическая; операционная; математическая;

Б. Графические модели: функциональная; технологическая; структурная; специальные.

Здесь перечислены не все виды моделей, применяемых при  исследовании ХТС, а только те, которые будут использованы далее.

Химическая модель (схема) представлена основными реакциями (химическими уравнениями), которые обеспечивают переработку сырья в продукт.

Информация о работе Химико-технологическая система