Автор работы: Пользователь скрыл имя, 28 Октября 2011 в 21:19, реферат
АМИНОКИСЛОТЫ - это органические (карбоновые) кислоты, в составе которых имеется аминогруппа (— NH2).
Участвуют в обмене белков и углеводов, в образовании важных для организмов соединений (например, пуриновых и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот), входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов, антибиотиков и т. д.;
Аминокислоты
АМИНОКИСЛОТЫ - это органические (карбоновые) кислоты, в составе которых имеется аминогруппа (— NH2).
Участвуют в
обмене белков и углеводов, в образовании
важных для организмов соединений (например,
пуриновых и пиримидиновых
дигидроксифенилаланин (ДОФА) и g-аминомасляная кислота служат посредниками при передаче нервных импульсов.
Строение аминокислот
В клетках и тканях живых организмов встречается около 300 различных аминокислот, но только 20 из них служат звеньями (мономерами), из которых построены пептиды и белки всех организмов (поэтому их называют белковыми аминокислотами). Последовательность расположения этих аминокислот в белках закодирована в последовательности нуклеотидов соответствующих генов (см. Генетический код). Остальные аминокислоты встречаются как в виде свободных молекул, так и в связанном виде. Многие из аминокислот встречаются лишь в определенных организмах, а есть и такие, которые обнаруживаются только в одном из великого множества описанных организмов.
История открытия аминокислот
Первая аминокислота — аспарагин— была открыта в 1806, последняя из аминокислот, обнаруженных в белках, — треонин — была идентифицирована в 1938. Каждая аминокислота имеет тривиальное (традиционное) название, иногда оно связано с источником выделения. Например, аспарагин впервые обнаружили в аспарагусе (спарже), глутаминовую кислоту — в клейковине (от англ. gluten — глютен) пшеницы, глицин был назван так за его сладкий вкус (от греч. glykys — сладкий).
Структура и свойства аминокислот
Общую структурную формулу любой аминокислоты можно представить следующим образом: карбоксильная группа (— СООН) и аминогруппа (— NH2) связаны с одним и тем же a-атомом углерода (счет атомов ведется от карбоксильной группы с помощью букв греческого алфавита — a, b, g и т. д.). Различаются же аминокислоты структурой боковой группы, или боковой цепи (радикал R), которые имеют разные размеры, форму, реакционную способность, определяют растворимость аминокислот в водной среде и их электрический заряд. И лишь у пролина боковая группа присоединена не только к a -углеродному атому, но и к аминогруппе, в результате чего образуется циклическая структура.
В нейтральной среде и в кристаллах -аминокислоты существуют как биполяры, или цвиттер-ионы.
Поэтому, например, формулу аминокислоты глицина — NH2—CH2—СООH — правильнее было бы записать как NH3+—CH2—COO–Только в наиболее простой по структуре аминокислоте — глицине — в роли радикала выступает атом водорода. У остальных аминокислот все четыре заместителя при a -углеродном атоме различны (т. е. a -углеродный атом углерода асимметричен). Поэтому эти аминокислоты обладают оптической активностью(способны вращать плоскость поляризованного света) и могут существовать в форме двух оптических изомеров — L (левовращающие) и D (правовращающие). Однако все природные аминокислоты являются L-аминокислотами. К числу же исключений можно отнести D-изомеры глутаминовой кислоты, аланина, валина, фенилаланина, лейцина и ряда других аминокислот, которые обнаружены в клеточной стенке бактерий; аминокислоты D-конформации входят в состав некоторых пептидных антибиотиков(в том числе актиномицинов, бацитрацина, грамицидинов A и S), алкалоидов из спорыньи и т. д.
Классификация аминокислот
Входящие в состав белков аминокислоты классифицируют в зависимости от особенностей их боковых групп. Например, исходя из их отношения к воде при биологических значениях рН (около рН 7,0), различают неполярные, или гидрофобные, аминокислоты и полярные, или гидрофильные. Кроме того, среди полярных аминокислот выделяют нейтральные (незаряженные); они содержат по одной кислой (карбоксильная) и одной основной группе (аминогруппа). Если же в аминокислоте присутствует более одной из вышеназванных групп, то их называют, соответственно, кислыми и основными.
Большинство микроорганизмов и растения создают все необходимые им аминокислоты из более простых молекул. В отличие от них животные организмы не могут синтезировать некоторые из аминокислот, в которых они нуждаются. Такие аминокислоты они должны получать в готовом виде, то есть с пищей. Поэтому, исходя из пищевой ценности, аминокислоты делят на незаменимые и заменимые. К числу незаменимых для человека аминокислот относятся валин, треонин, триптофан, фенилаланин, метионин, лизин, лейцин, изолейцин, а для детей незаменимыми являются также гистидин и аргинин. Недостаток любой из незаменимых аминокислот в организме приводит к нарушению обмена веществ, замедлению роста и развития.
В отдельных
белках встречаются редкие (нестандартные)
аминокислоты, которые образуются путем
различных химических превращений
боковых групп обычных
Использование аминокислот
Аминокислоты находят широкое применение в качестве пищевых добавок. Например, лизином, триптофаном, треонином и метионином обогащают корма сельскохозяйственных животных, добавление натриевой соли глутаминовой кислоты (глутамата натрия) придает ряду продуктов мясной вкус. В смеси или отдельно аминокислоты применяют в медицине, в том числе при нарушениях обмена веществ и заболеваниях органов пищеварения, при некоторых заболеваниях центральной нервной системы (g-аминомасляная и глутаминовая кислоты, ДОФА). Аминокислоты используются при изготовлении лекарственных препаратов, красителей, в парфюмерной промышленности, в производстве моющих средств, синтетических волокон и пленки и т. д.
Для хозяйственных
и медицинских нужд аминокислоты
получают с помощью микроорганизмов
путем так называемого
Аммиак
АММИАК - (от греч. hals ammoniakos — амонова соль, нашатырь, который получали около храма бога Амона в Египте), NH3, бесцветный газ с резким запахом. Молекула имеет форму правильной пирамиды. Связи N—H полярны. Молярная масса 17 г/моль. Плотность 0,639 г/дм3. Температура кипения –33,35°C, температура плавления –77,7°C. Критическая температура 113°C, критическое давление 11,425 кПа. Теплота испарения 23,27 кДж/моль, теплота плавления 5,86 кДж/моль.
Получение
Впервые чистый
аммиак был получен в 1774 Дж. Пристли.
Промышленную технологию получения
аммиака разработали и
В промышленности аммиак получают в стальных колоннах синтеза, наполненных катализатором — пористым железом. Через колонну под давлением 30 МПа и при температуре 420-500 °C пропускают смесь азота и водорода. Так как реакция
3Н2 + N2 = 2NH3 + 104 кДж
обратима, при
однократном проходе газовой
смеси через колонну в аммиак
превращается не более 15-25% исходных веществ.
Для полного превращения
В лаборатории газообразный аммиак получают нагреванием аммиачной воды или твердой смеси NH4Сl и Сa(OH)2:
2NH4Сl + Сa(OH)2 = 2NH3 + CaCl2 + 2H2О
Для осушения аммиака его пропускают через смесь извести с едким натром.
Физические и химические свойства
Хорошо растворим в воде (700 объемов NH3 в 1 объеме воды при комнатной температуре). Максимальная массовая концентрация (%) аммиака в водном растворе 42,8 (0°C), 33,1 (20°C), 23,4 (40°C). Плотность водных растворов аммиака (кг/дм3): 0,97 (8% по массе), 0,947 (16%), 0,889 (32 %). Раствор аммиака в воде называют аммиачной водой, ее концентрация 25%. В водном растворе аммиак частично ионизирован, что обусловливает щелочную реакцию раствора:
NH3 + Н2О = NH4+ + ОН–
На самом деле молекул NH4ОН в растворе не существует. Атом N в молекуле аммиака связан тремя ковалентными связями с атомами водорода и сохраняет при этом одну неподеленную пару. Он не может быть соединен с атомами кислорода и водорода пятью полярными ковалентным и связями. Имеется в виду гидратированный аммиак, NН3·Н2О.
Аммиак проявляет свойства основания (основания Бренстедта). В кислой среде молекула NH3 присоединяет ион Н+, образуется ион аммония NH4+. Реагируя с кислотами, аммиак нейтрализует их, образуя соли аммония:
NH3 + HCl = NH4Cl
Большинство солей аммония бесцветны и хорошо растворимы в воде. Растворы солей, образованные аммиаком и сильными кислотами, имеют слабокислую реакцию.
Смесь аммиака
и воздуха взрывоопасна. Но горит
аммиак только в чистом кислороде
бледным зеленым пламенем:
4NH3 + 3О2 = 2N2 + 6Н2О,
применение платинового катализатора, образуется оксид азота (II) NО:
4NH3 + 5О2 = 4NО + 6Н2О
Аммиак обладает восстановительными свойствами:
2NH3 + Fe2O3 = 2Fe + N2 + 3H2O
При определенных условиях аммиак реагирует с галогенами. Щелочные и щелочно-земельные металлы реагируют с жидким и газообразным аммиаком, давая амиды. При нагревании в Атмосфере аммиака многие металлы и неметаллы (Zn, Cd, Fe, Cr, B, Si и другие) образуют нитриды. Жидкий аммиак взаимодействует с серой:
10S + 4 NH3 = 6 Н2S + N4S4
При 1000°C аммиак реагирует с углем, образуя HCN и частично разлагаясь на азот и водород.
Применение
В промышленности
аммиак используют при получении азотной
кислоты HNO3, в производстве азотных минеральных
удобрений, в качестве хладагента. Аммиачная
вода является азотным удобрением. Нашатырный
спирт используют в медицине.
Физиологическое действие
Аммиак ядовит, ПДК 20 мг/м3. Жидкий аммиак вызывает сильные ожоги. При содержании в воздухе 0,5% по объему аммиак сильно раздражает слизистые оболочки. При остром отравлении поражаются глаза и дыхательные пути. При хроническом отравлении — расстройство пищеварения, катар верхних дыхательных путей, ослабление слуха.