Автор работы: Пользователь скрыл имя, 30 Ноября 2011 в 14:59, курсовая работа
Наиболее прогрессивен вид нового сварочного оборудования, выполняемого в настоящее время по инверторной схеме. В большинстве случаев оборудование неразрывно связано с конкретным типом проволокоподающего устройства. В наиболее простом варианте это источник, позволяющий выполнять механизированную сварку плавящимся электродом в защитных газах низколегированных и коррозионно-стойких сталей и алюминия. Используется также при сварке порошковой и самозащитной проволоками. Особенностью высокочастотных инверторов являются высокая стабильность и качество сварки различных материалов в широком диапазоне толщин с минимальным разбрызгиванием металла. Такое оборудование в ряде случаев обеспечивает высококачественную сварку и покрытыми электродами со всеми видами покрытий.
Введение……………………………………………………………………4
1 Инвертор. (Принцип работы, разновидность, область применения)……….8
1.1 Последовательный инвертор……………………………………………… .8
1.2 Параллельный инвертор…………………………………………………….10
1.3 Мостовые инверторы……………………………………………………… 13
1.3.1 Резистивная нагрузка…………………………………………………… .13
1.3.2 Индуктивная нагрузка…………………………………………………… 14
1.3.3 Полумостовой инвертор с RLC – нагрузкой…………………………… 16
1.4 Инвертор Мак-Мюррея (инвертирующий преобразователь)…………….17
1.5 Инвертор Мак-Мюррея – Бедфорда……………………………………….19
1.6 Трехфазные инверторы…………………………………………………… .21
1.6.1 120-градусный режим работы…………………………………………….21
1.6.2 - 180-градусный режим работы………………………………………… 23
1.7 Трехфазный инвертор тока…………………………………………………25
1.8 Управление выходным напряжением инвертора…………………………27
1.8.1 Однократный широтно-импульсный модулятор……………………… .27
1.8.2 Многократный широтно-импульсный модулятор…………………… .29
1.9 Управление гармоническими составляющими
(управление формой напряжения)…………………………………………… 31
1.9.1 Коммутация промежуточных отводов в трансформаторе……… .31
1.9.2 Подключение через трансформатор…………………………………… 32
1.9.3. Использование фильтров……………………………………………… 34
2 Инверторные источники питания для дуговой сварки…………………… .35
2.1 Начало развития и внедрение в производство инверторных
источников питания ……………………………………………………………35
2.2 Особенности работы сварочных инверторов от автономных
источников питания…………………………………………………………….41
2.3 Инверторный аппарат ДС 250.33 для сварки
покрытыми электродами……………………………………………………… 47
2.4 Универсальный сварочный инверторный источник общего
назначения Invertec V300-1…………………………………………………… 52
2.5 Сварочные инверторные аппараты MOS 138E, MOS Г68Е,
MOS 170E……………………………………………………………………… 59
2.6 Инверторный сварочный аппарат POWER MAN………………………….61
Библиографический список………………………………………………64
Рис.13а - Электрическая
схема инвертора с коммутацией
промежуточных отводов в
В следующий момент времени запускается тиристор 2, а тиристор 1 выключается. Отношение «вольт/виток» увеличивается, и выходное напряжение инвертора также увеличивается. После запуска тиристора 3 тиристор 2 выключается, выходное напряжение инвертора становится максимальным. Для получения двенадцатиступенчатой формы выходного напряжения тиристоры должны запускаться в последовательности 1-2-3-2-1-1А-2А-ЗА-2А-1А. Недостатком этой схемы является сложность запуска и коммутирования тиристоров.
1.9.2 Подключение через трансформатор
Схема компенсации гармонических составляющих с помощью двух трансформаторов изображена на рис.13б. Выходное напряжение в этой схеме является векторной суммой выходных напряжений двух инверторов. Этот метод применяется для компенсации конкретной гармонической составляющей в выходном напряжении (избирательное устранение гармоник). Вторичные обмотки этих двух трансформаторов включены последовательно таким образом, чтобы V1 + V2 = Vo. Запуск тиристоров второго инвертора запаздывает на угол θ по отношения к запуску тиристоров первого инвертора. Форма выходного напряжения V0 может быть получена суммированием напряжений V1 и V2. Форма выходного напряжения представляет собой 120-градусные квазипрямоугольные импульсы. На рис.13в показаны векторные диаграммы основных и третьих гармоник выходных напряжений инверторов при угле запаздывании 0 = 60°.
Рис.13 - б) Подключение нагрузки через трансформатор в) Векторная диаграмма
Напряжения третьих гармоник находятся в противофазе друг к другу. Поэтому в суммарном выходном напряжении инверторов третья гармоника отсутствует. Выбрав угол запаздывания θ = 36°, можно скомпенсировать в выходном напряжении пятую гармонику. Недостатком этой схемы является то, что требуются два инвертора и два одинаковых трансформатора.
1.9.3. Использование фильтров
Различные типы
используемых фильтров изображены на
рис.13г. В однозвенном LС-фильтре
реактивное сопротивление индуктивности
L с увеличением частоты
Рис.13г - Использование фильтров
Некоторая часть гармоник все же проходит через однозвенный LC-фильтр в нагрузку. Существенно улучшить фильтрацию гармоник можно с помощью использования многозвенных LC-фильтров. Размер индуктивности фильтра можно уменьшить, подключив его ко вторичной обмотке понижающего трансформатора.
Если инвертор работает на фиксированной частоте, можно использовать последовательный резонансный LС-фильтр. Значениях и С выбираются так, чтобы их собственная резонансная частота фильтра была равна выходной частоте инвертора. Фильтр и нагрузочное сопротивление работают как последовательный низкодобротный резонансный контур. Электрический ток в такой цепи находится в фазе с выходным напряжением, поэтому напряжение нагрузочного сопротивления синусоидально. Применение реактивных фильтров предпочтительно для высокочастотных устройств.
2 Инверторные источники питания для дуговой сварки
2.1 Начало развития
и внедрение в производство
инверторных источников
В наступившем веке бесспорным лидером в производстве сварочной техники становятся инверторные источники питания. При их применении потери электроэнергии снижаются до 10 раз, материалоемкость оборудования - до 10-12 раз, а ПР источника повышается до 80-100 %. Уменьшаются размеры и масса сварочных аппаратов. Основным достоинством инверторной техники является ее мобильность, что позволяет использовать подобные агрегаты при выполнении монтажных работ в стационарных и полевых условиях.
В 1905 г. австрийский
профессор Розенберг разработал
специальный сварочный
В 1907 г. на заводе Lincoln Electric был выпущен генератор с изменяемым напряжением. Через 20 лет русский ученый В. П. Никитин получил патент на первый в мире однокорпусный комбинированный трансформатор-регулятор для дуговой сварки.
В начале 50-х
гг. появились полупроводниковые
селеновые диоды. Это позволило
разработчикам создать
Позже, в 70-е гг. с появлением силовых кремниевых тиристоров стало возможно плавно изменять сварочный ток и выходные ВАХ сварочных аппаратов не за счет трансформатора, а на основе обратных связей и фазовой регулировки угла включения тиристоров.
В 1977 г. на рынке сварочного оборудования появился источник питания Hiiark-250 финской фирмы Kemppi, собранный на базе "скоростных тиристоров", обеспечивших преобразование постоянного тока в переменный с частотой 2-3 кГц. Это стало началом развития инверторных источников питания в сварочной технике.
В обычных выпрямителях
трансформатор работает на сетевой
частоте 50 Гц. Повышение частоты
до 2 кГц и более позволило
Смысл инвертирования
заключается в поэтапном
Инверторы также отличаются низкой пульсацией выпрямленного тока, высокой скоростью регулировки, возможностью получения разнообразных ВАХ и высоким (до 90 %) КПД.
Сравнительные характеристики инверторных сварочных аппаратов приведены в таблице № 1.
Классическим
примером тиристорного инвертора является
сварочный универсальный
С появлением модульных биполярных транзисторов с изолированным затвором (IGBT) сварочные трансформаторы стали работать на частоте до 20 кГц. При этом отношение сварочного тока к единице массы источника питания повысилось вдвое. На базе IGBT-транзисторов стали выпускать маленькие бытовые источники питания для ручной дуговой сварки, а также импульснодуговой и механизированной сварки в защитных газах, плазменной резки.
Последующая стадия развития сварочных инверторов связана с появлением в 90-х гг. полевых МОП-транзисторов серии MOSFET. Частота за счет силовых полевых транзисторов повысилась до нескольких десятков килогерц. На их базе фирма ESAB стала выпускать установки для ручной дуговой сварки Power lnvert-315 с частотой 24 кГц и малогабаритные источники Caddi-130, 140 и 200. Дальнейшее развитие инверторной техники пошло по пути совершенствования MOSFET-транзисторов. Выпущенный той же фирмой источник Caddi-250 массой 11 кг работает на частоте 49 кГц.
В 2001 г. в Эссене фирма Kemppi продемонстрировала малогабаритные переносные сварочные инверторы Minarc-110 и 140 массой 4,2 кг и рабочей частотой 80 кГц. При длине электрокабеля до 50 м переносной Minarc -идеальный аппарат для работы в труднодоступных местах. Он предназначен для использования разнотипных электродов и имеет особый износостойкий корпус.
Современные инверторы lnvertec-140 и 160 американской фирмы Lincoln Electric - это аппараты со специальной схемой стабилизации питания для надежной работы от автономных генераторов мощности. При аргонодуговой сварке поджиг дуги осуществляется методом точечного касания.
К сожалению, следует
признать, что отечественные
Среди них сварочные выпрямители серии "Форсаж" Государственного Рязанского приборного завода. Эти установки предназначены для сварки низкоуглеродистых, низколегированных и коррозионно-стойких сталей. Они имеют плавную регулировку сварочного тока, снабжены вентилятором и защитой от перегрева. Диапазон сварочного тока от 40 до 315 А, масса 6,7-12,5 кг.
Сварочный инверторный аппарат "Торус-200" предназначен для дуговой сварки постоянным током. Несмотря на маленький размер (115х185х280 мм) и массу около 5 кг, диапазон сварочного тока у него 40-200 А. Этот сравнительно недорогой источник может работать от бытовой сети дома, на приусадебных участках, в гаражах и т. д.
В настоящее время лучшими среди сварочных аппаратов инверторного типа признаны самые малогабаритные в мире серии ВМЕ, разработанные в ООО НПЦ "ПромЭл-2000" (изготовитель ОАО "Машиностроительный завод "Прогресс", Астрахань). Они удостоены Золотой медали Международного салона инноваций и инвестиций (Москва, 2002 г.), а также множества дипломов международных и региональных выставок.
Таблица № 1
Аппарат, фирма-изготовитель, страна | Диапазон регулирования сварочного тока, А | Габаритные размеры, мм | Масса, кг | ПВ,% |
Master-1500, Kemppi, Финляндия | 15-150 | 390x155x285 | 10 | 20 |
Mmarc-140, Kemppi, Финляндия | 10-140 | 305x123x250 | 4,8 | 80 |
InvertecV 160-S, Lincoln Electric, США | 5-160 | 320x200x430 | 10,5 | - |
Caddy Tig 150, ESAB, Швеция | 3-150 | 310x130x250 | 5,5 | 25 |
Tecnica 1600, Telwin, Италия | 5-150 | 280x150x195 | 3,3 | 10 |
Mito 160 MMA, Mito, Италия | 5-160 | 175x430x245 | 14 | 60 |
TINY 150, Kjellberg, Германия | 5-150 | 320x110x260 | 5,4 | 35 |
SI601, Cemont, Италия | 5-150 | 145x235x340 | 7,7 | 35 |
Topyc-200, OOO "TOP", Россия | 40-200 | 115 x 185 x 280 | 5 | 40 |
Форсаж-160,
Государственный Рязанский |
40-315 | 410x180x390 | 10 | 60 |
ВДУ4-1371, АО "Спецэлектромаш", Россия | 5-130 | 365x139x196 | 8 | 100 |
BME-160, ОООНПЦ"ПромЭл-2000", Россия ЭЛ-2000", Россия | 15-160 | 175x300x86 | 3,6 | 80 |
Примечание. Напряжение питающей сети 220 В. |
Таблица № 2
Аппарат | Напряжение питающей сети, В | Диапазон регулирования сварочного тока, А | Напряжение холостого хода, В | Габаритные размеры, мм | Масса, кг |
ВМЕ-120 | 220 | 10-120 | 60-80 | 140x250x65 | 2,2 |
ВМЕ-140 | 220 | 10-140 | 60-80 | 140x250x65 | 2,3 |
ВМЕ-160 | 220 | 10-160 | 60-80 | 175x300x86 | 3,6 |
ВМ-300 | 380 | 50-300 | 50-70 | 406x310x90 | 8,0 |
ВМ-420 | 380 | 50-420 | 60-80 | 540x314x90 | 12,0 |
Примечание Для всех аппаратов ПВ = 80 % |
Таблица № 3
Источник | Напряжение питающей сети, В | Диапазон регулирования длительности действия прямого и обратного тока, с | Диапазон регулирования амплитуды прямого и обратного тока,А | ПВ, % | Габаритные размеры, мм | Масса, кг |
ВМ 120 | 220 | - | 20-120 | 100 | 276x270x65 | 2,2 |
ВМ 120Р | 220 | 6-600
Плавно |
Плавно | 100 | 276x270x65 | 3,7 |
Информация о работе Инверторные источники питания для электродуговой сварки