Автор работы: Пользователь скрыл имя, 17 Ноября 2011 в 20:21, реферат
Генератор служит для преобразования механической энергии в электрическую, необходимую для питания всех приборов электрооборудования автомобиля (кроме стартера) и для заряда аккумуляторной батареи.
Турбогенераторы (ТГ) представляют собой основной вид генерирующего оборудования, обеспечивающего свыше 80% общего мирового объема выработки электроэнергии. Одновременно ТГ являются и наиболее сложным типом электрических машин, в которых тесно сочетаются проблемы мощности, габаритов, электромагнитных характеристик, нагрева, охлаждения, статической и динамической прочности элементов конструкции. Обеспечение максимальной эксплуатационной надежности и экономичности ТГ является центральной научно-технической проблемой.
Генератор.
Генератор служит для преобразования механической энергии в электрическую, необходимую для питания всех приборов электрооборудования автомобиля (кроме стартера) и для заряда аккумуляторной батареи.
Турбогенераторы (ТГ) представляют собой основной вид генерирующего оборудования, обеспечивающего свыше 80% общего мирового объема выработки электроэнергии. Одновременно ТГ являются и наиболее сложным типом электрических машин, в которых тесно сочетаются проблемы мощности, габаритов, электромагнитных характеристик, нагрева, охлаждения, статической и динамической прочности элементов конструкции. Обеспечение максимальной эксплуатационной надежности и экономичности ТГ является центральной научно-технической проблемой.
Турбогенератор - неявнополюсный синхронный генератор, основная функция которого состоит в конвертации механической энергии в работе от паровой или газовой турбины в электрическую при высоких скоростях вращения ротора (3000,1500об/мин).
Механическая энергия от турбины конвертируется
в электрическую при помощи вращающегося
магнитного поля, которое создается током
постоянного напряжения, протекающего
в медной обмотке ротора, что в свою очередь
приводит к возникновению трехфазного
переменного тока и напряжения в обмотках
статора. В зависимости от систем охлаждения
турбогенераторы подразделяются на несколько
видов: генераторы с воздушным охлаждением,
генераторы с водородным охлаждением
и генераторы с водяным охлаждением. Также
существуют комбинированные типы, например,
генератор с водородно-водяным охлаждением
(ТВВ). Турбогенератор ТВВ-320-2 предназначен
для выработки электрической энергии
на тепловой электростанции при непосредственном
соединении с паровой турбиной К-300-240 Ленинградского
металлического завода или Т-250-240 Уральского
турбомоторного завода.
1. Технические данные
Номинальные параметры генератора при номинальном давлении и температуре охлаждающих сред даны в табл. 1.
Наименование основных параметров | Номинальный режим | Длительно допустимый режим |
Полная мощность, квт | 353000 | 367000 |
Активная мощность, квт | 300000 | 330000 |
Коэффициент мощности | 0,85 | 0,9 |
Напряжение. в | 20000 | 20000 |
Ток, а | 10200 | 10600 |
Частота, гц | 50 | 50 |
Скорость вращения, об/мин | 3000 | 3000 |
Коэффициент полезного действия, % | 98,7 | Не нормируется |
Критическая скорость вращения, об/мин | 900/2600 | 900/2600 |
Соединение фаз обмотки статора | Двойная звезда | |
Число выводов обмотки статора | 9 | 9 |
Основные параметры охлаждающих сред
Водород в корпусе статора
Избыточное давление номинальное, кг/см2 | 4 |
Избыточное давление наибольшее, кг/см2 | 4,5 |
Номинальная температура холодного газа, | 40 |
Чистота, % | Не менее 97 |
Содержание кислорода, % | Не более 1,2 |
Относительная влажность водорода при номинальном давлении, % | Не более 10 |
Дистиллят в обмотке статора
Номинальное избыточное давление на входе в обмотку, кгс/см2 | 3 |
Допустимое отклонение, кгс/см2 | 0.5 |
Номинальная
температура холодного |
Плюс 40 |
Допустимое отклонение, | 5 |
Номинальный расход, м3/час | 35 |
Допустимое отклонение, м3/час | 3.5 |
Номинальное удельное сопротивление дистиллята, ком*см | 200 |
Допустимое наименьшее удельное сопротивление дистиллята, ком*см | 75 |
Техническая вода в газоохладителях
Номинальное избыточное давление холодной воды, кгс/см2 | 4 |
Допустимое отклонение, кгс/см2 | 0.5 |
Номинальная температура холодной воды, | 33 |
Наименьшая температура воды, | 20 |
Наибольшая температура воды | |
Номинальный расход воды, м3/час | 600 |
Техническая вода в теплообменниках обмотки статора
Избыточное давление технической воды должно быть не больше избыточного давления дистиллята в обмотке.
Номинальная температура холодной воды, | Плюс 33 |
Допустимое отклонение определяется температурой дистиллята.
Наибольшая допустимая температура отдельных узлов генератора и охлаждающих сред. Изоляция обмоток генератора класса "B".
Наибольшая допустимая температура отдельных узлов генератора и охлаждающих сред указана в табл. 2.
Наименование
элементов
генератора |
Наибольшая температура, , измеренная | ||
по сопротивлению | по термометрам сопротивления | По ртутным термометрам | |
Обмотка статора | - | 105 | - |
Обмотка ротора | 115* | - | - |
Сердечник статора | - | 105 | - |
Горячий дистиллят на выходе из обмотки | - | - | 85 |
Горячий газ в генераторе | - | 75 | 75 |
*Допускается
превышение температуры
Допустимая температура по температурам сопротивления, заложенным под клинья статорной обмотки, не должна превышать 75 между показаниями наиболее и наименее нагретого термометров сопротивления не должна превышать 20 могут быть уточнены по согласованию с предприятием-изготовителем для каждой конкретной машины после проведения тепловых испытаний.
Дополнительные технические данные
Расход масла на подшипник генератора (без уплотнения вала), л /мин | 370 |
Избыточное давление масла в опорных подшипниках, кгс/см2 | 0.3÷0.5 |
Расход масла на уплотнения вала с обеих сторон генератора, л/мин | 180 |
Газовый объем собранного генератора, м3 | 87 |
Число ходов воды газоохладителя | 2 |
Масса газоохладителя, кг | 1915 |
Масса ротора генератора, кг | 55000 |
Масса средней части с серьгой для монтажа (без рым-лап), кг | 198200 |
Масса концевой части, кг | 23050 |
Масса статора с рым-лапами, газоохладителями и щитами, кг | 271000 |
Масса подшипника с траверсой и фундаментной плитой, кг | 11100 |
Масса вывода концевого (крайнего), кг | 201 |
Масса полущита наружного, кг | 75 |
2. Устройство и работа генератора
Общая функциональная схема работы
Генератор
выполнен с непосредственным охлаждением
обмотки статора
Дистиллят
в обмотке статора циркулирует
под напором насосов и
Охлаждающий
водород циркулирует в
Циркуляция воды в газоохладителях и теплообменниках осуществляется насосами, расположенными вне генератора.
Маслоснабжение опорных подшипников и уплотнений вала производится от масляной системы турбины.
Для аварийного снабжения маслом опорных подшипников и уплотнений вала на выбеге агрегата предусмотрены резервные баки, установленные вне генератора.
Генератор возбуждается от высокочастотного индукторного генератора через полупроводниковые выпрямители.
Корпус статора и фундаментные плиты
Сварной газонепроницаемый корпус статора состоит из средней части, несущей сердечник с обмоткой, и двух концевых частей.
В
концевых частях располагаются лобовые
части обмотки и
В концевой части со стороны возбудителя установлены концевые выводы обмотки - вверху нулевые, а внизу линейные.
Механическая прочность корпуса достаточна, чтобы статор мог выдержать без остаточных деформаций внутреннее давление в случае взрыва водорода.
Наружные
щиты статора непосредственно
Половины щитов вентиляторов изолированы от внутренних щитов и между собой.
Разъемы
щитов расположены в
В щитах и в бочке ротора предусмотрены специальные каналы, по которым охлаждающий газ попадает в лобовые части обмотки ротора.
Газоплотность соединений соединения плоскостей корпуса и наружных щитов обеспечивается резиновым шнуром, приклеенным по дну канавок, выфрезерованных в наружных щитах.
Чтобы приникнуть внутрь корпуса, не разбирая наружных щитов, в нижней его части предусмотрен люк.
До установки генератора на фундамент статор опирается на транспортные лапы, приваренные к корпусу.
Статор устанавливается на фундамент посредством рым- лап, которые при транспортировании снимаются.
Основанием для генератора и возбудителя служат фундаментные плиты, выполненные из стальных листов. Они устанавливаются во время монтажа на закладные плиты и постоянные подкладки и подливаются бетоном.
Для крепления генератора к фундаменту используются фундаментные шпильки.
Основанием для подшипника генератора является фундаментная плита коробчатого типа.
Газоохладители
Выделяющееся в генераторе тепло отводится четырьмя вертикальными охладителями.
Каждый охладитель состоит из биметаллических, латунно-алюминиевых трубок с прокатанными алюминиевыми ребрами.
Трубки завальцованы с обеих сторон в трубные доски, к которым приболчены камеры, уплотненные резиной и связанные между собою рамами.
Охладители вставляются в статор сверху и верхними трубными досками опираются на концевые части статора.
Нижние
камеры по отношению к корпусу
статора уплотнены резиной
Съемные крышки водяных камер позволяют производить чистку трубок и контроль за их состоянием, не нарушая герметичности корпуса статора.
Напорные и сливные трубы присоединены к нижним крышкам.
Для
выпуска воздуха из верхних камер
охладителей предусмотрены
Каждая трубка, пропущенная через одну из охлаждающих трубок и нижнюю камеру, заканчивается фланцем, приваренным к камере.
К фланцам присоединяются отводящие трубки с кранами, которые во время работы генератора должны быть постоянно открыты с минимальным сливом воды в дренаж.