Производители удобрений

Автор работы: Пользователь скрыл имя, 19 Марта 2012 в 11:00, курсовая работа

Краткое описание

Бурное развитие промышленного производства и рост народонаселения в значительной степени меняют характер взаимодействия человека с окружающей средой. В основе жизни лежит круговорот элементов, который для человека выражается в обмене веществ с природой. Земля, воздух, вода загрязняются промышленными и бытовыми отходами, сокращаются леса и запасы пригодных для сельского хозяйства земель, исчезают многие виды животных и растений.

Содержание работы

Введение
1. Характеристика используемого сырья
2. Характеристика технологии производства суперфосфата
3.Виды фосфорных удобрений и их применение.
4.Производители удобрений
Список использованной литературы

Содержимое работы - 1 файл

План.doc

— 124.00 Кб (Скачать файл)

На рис. 1. представлена технологическая блок-схема производства двойного суперфосфата поточным методом с аппаратом БГС производительностью 180 тыс. тонн в год. Измельченный фосфорит из бункера и фосфорную кислоту из сборника подают в реактор I ступени. Из него реакционная пульпа перетекает в реактор II ступени. В оба реактора подают острый пар, обеспечивающий температуру реакционной массы 90-100ºС. Из реактора II ступени пульпа поступает в аппарат БГС, где происходит завершающая стадия разложения фосфорита, сушка и грануляция пульпы. В аппарат БГС подается также ретур - тонко измельченный двойной суперфосфат после отделения товарного продукта. Отношение масс ретура и готового суперфосфата равно 3:1. Пульпа, поступающая в аппарат БГС, разбрызгивается форсунками и наслаивается на частицы ретура, образуя гранулы, которые высушиваются при 700ºС топочными газами, поступающими в аппарат из топки. Сухой продукт направляется на грохоты, где его разделяют на три фракции. Крупную фракцию после измельчения в дробилке, смешивают с мелкой фракцией, прошедшей через второй грохот, и пылью из циклонов и в виде ретура возвращается в аппарат БГС. Товарную фракцию суперфосфата, прошедшую через второй грохот, с размером гранул 1-4 мм, направляют в барабан-аммонизатор, где остаточная фосфорная кислота нейтрализуется аммиаком. Из аммонизатора она попадает в холодильник кипящего слоя и затем на склад. Выделяющиеся из аппарата БГС фторсодержащие газы очищаются от пыли в циклоне и направляются на абсорбцию.

Основным аппаратом в поточной схеме является барабанная гранулятор-сушилка (аппарат БГС), представляющая барабан диаметром 4,5 м и длиной до 35 м, установленный под углом 3º и вращающийся с частотой 4 об/м. Барабан содержит внутри лопастную насадку переменной конфигурации, с помощью которой при вращении барабана создается завеса частиц суперфосфата, ссыпающегося с полок. Теплоноситель (топочные газы) и поток суспензии суперфосфата подаются по оси аппарата, что уменьшает нагрев его стенок и позволяет применять топочные газы, нагретые до 950ºС. Производительность аппарата БГС составляет 40 т/час.

Упаковывают гранулированный двойной суперфосфат в водонепроницаемые мешки, транспортируют в крытых вагонах или автомобилях, хранят в закрытых сухих помещениях.

В себестоимости производства суперфосфата наибольшую долю (93-96%) составляет стоимость сырья, как и в производстве всех минеральных удобрений. Себестоимость гранулированного двойного суперфосфата выше, чем порошкообразного. Однако гранулирование способствует значительному улучшению качества и агрохимических свойств удобрения. Себестоимость продукта в поточном и камерном методах практически одинакова. При этом себестоимость P2O5 в них на 20% выше, чем в производстве простого суперфосфата. Однако, это компенсируется экономией при транспортировке, хранении и внесении в почву более концентрированного удобрения, каким является двойной суперфосфат.

- предмет труда и побочные продукты на всех стадиях переработки;

- стадии переработки продукции (операции);

- технологические (предметные) связи.

Рис. 1. Блок-схема технологического процесса производства двойного суперфосфата:

1 - смешение измельченного фосфорита и фосфорной кислоты;

2 - разложение фосфорита I ступени;

3 - разложение фосфорита II ступени;

4 - гранулирование пульпы;

5 - очищение фосфорсодержащих газов от пыли;

6 - сушка гранул пульпы;

7 - получение топочных газов (в топке);

8 - грохочение сухого продукта;

9 - измельчение крупной фракции;

10 - отделение мелкой и средней (товарной) фракции на втором грохоте;

11 - смешение измельченной крупной фракции и мелкой;

12 - аммонизация (нейтрализация) остаточной фосфорной кислоты;

13 - очищение газов, содержащих аммиак и пыль;

14 - охлаждение нейтрализованной товарной фракции двойного суперфосфата


3.Виды фосфорных удобрений и их применение.

 

Суперфосфат выпускается в виде гранул размером 1—4 мм. Гранулированный суперфосфат обладает хорошими физическими свойствами: не слеживается, сохраняет хорошую рассеваемость. При гранулировании свободная фосфорная кислота нейтрализуется и суперфосфат высушивается, поэтому содержание воды и свободной фосфорной кислоты снижается соответственно до 1—4% и 1—1,5%.

При нейтрализации свободной кислотности суперфосфата аммиаком получают аммонизированный суперфосфат с содержанием азота около 1,5—3%.

Двойной суперфосфат в отличие от простого имеет высокое содержание усвояемого фосфора в расчете на Р2О5. —42—49% и не содержит гипса. Фосфор находится в нем в виде водорастворимого монокальцийфосфата Ca(H2PO4)2- Н2О и небольшого количества свободной фосфорной кислоты (2,5—5,0%).

При производстве двойного суперфосфата апатит (или фосфорит) обрабатывают серной кислотой. Ее берут больше, чем при производстве простого суперфосфата, для того чтобы получить не монокальцийфосфат, а фосфорную кислоту, которой затем обрабатывают новую порцию сырья и получают двойной суперфосфат — Ca(H2PO4)2- Н2О:

2Ca5F(PO4)3 +14H2P04 + 10Н2О = 10Ca(H2PO4)2- Н2О +2HF

Двойной суперфосфат выпускают в гранулированном виде.

Химические и физические свойства, применение и эффективность его такие же, как и простого. Только при удобрении культур, положительно реагирующих на гипс (клевер и другие бобовые), более сильное положительное действие оказывает простой суперфосфат.

В почве фосфор суперфосфата вследствие химического взаимодействия с полуторными окислами, карбонатами кальция и магния (или поглощенным кальцием) превращается в не растворимые в воде фосфаты, менее доступные для растений, т. е. подвергается химическому поглощению, или ретроградации. На почвах, насыщенных основаниями,— черноземах и особенно сероземах и других карбонатных почвах — образуются слаборастворимые фосфаты кальция (октокальцийфосфат и др.).

В кислых дерново-подзолистых почвах и красноземах, содержащих большое количество подвижных форм полуторных окислов, образуются фосфаты алюминия и железа, фосфор из которых слабо доступен для растений. Чем больше содержится в почве подвижных форм полуторных окислов, тем сильнее происходит химическое поглощение фосфора суперфосфата. В результате этого уменьшается использование фосфора растениями и снижается его эффективность.

Фосфор суперфосфата почти полностью закрепляется в месте его внесения и очень слабо передвигается в почве. При внесении до посева в качестве основного удобрения суперфосфат следует заделывать под плуг, с тем чтобы удобрение находилось в более глубоком и постоянно влажном слое почвы, где размещается основная масса деятельных корней растений. Особое значение глубокая заделка суперфосфата имеет в засушливых условиях.

При мелкой заделке суперфосфата основная масса удобрения оказывается в верхнем слое почвы, который быстро высыхает. Корни в этом слое отмирают, поэтому фосфор удобрения хуже используется растениями. Поверхностное внесение его в подкормку без заделки (под зерновые и другие культуры сплошного посева) малоэффективно.

Связывание фосфора суперфосфата в кислых почвах происходит сильнее при более полном контакте удобрения с почвой (разбросное внесение, мелкие размеры частиц), фосфор гранулированного суперфосфата меньше закрепляется почвой, чем порошковидного. На нейтральных и карбонатных почвах фосфор удобрения лучше усваивается при более равномерном распределении в почве и гранулирование суперфосфата существенно не повышает эффективность удобрения.

Закрепление фосфора суперфосфата, особенно гранулированного, в кислых почвах снижается при местном внесении его в рядки или гнезда при посеве, а также при ленточном внесении до посева. Поэтому и эффективность гранулированного суперфосфата на кислых почвах при одинаковых способах внесения (как при разбросанном внесении до посева, так и при местном внесении в рядки или лунки при посеве) значительно выше, чем порошковидного. При рядковом внесении небольшие дозы суперфосфата дают такие же прибавки урожая, как и значительно большие дозы при разбросном допосевном внесении. Это обусловлено снижением химического связывания фосфора вследствие уменьшения площади соприкосновения удобрения с кислой почвой, а также тем, что удобрение размещается вблизи прорастающих семян и обеспечивается питание растений легкодоступным фосфором с самого раннего периода роста. В рядки при посеве зерновых, зернобобовых культур, льна и сахарной свеклы вносится 10—15 кг P2O5 на 1 га в виде суперфосфата; в лунки при посадке картофеля и овощных культур — 15—30 кг Р2О5 на 1 га; при посеве кукурузы — 4—8 кг P2O5 на 1 га.

Коэффициент использования фосфора из суперфосфата в год его внесения при допосевном его применении вразброс под вспашку составляет 10—15% внесенного количества, а при рядковом внесении возрастает в полтора — два раза. За 2—3 года коэффициент использования фосфора суперфосфата составляет примерно 40%.

Для получения высокого урожая сахарной свеклы, кукурузы, льна, картофеля, зерновых, овощных и других культур целесообразно сочетать внесение суперфосфата в основном удобрении до посева с внесением небольшой дозы его в рядки или лунки при посеве. При этом создаются хорошие условия питания растений фосфором как в первый период роста за счет рядкового удобрения, так и в последующие периоды за счет основного удобрения, внесенного под плуг. Однако на почвах с высоким содержанием подвижного фосфора или при внесении очень высоких доз фосфорных удобрений до посева применение суперфосфата в рядки при посеве может не давать эффекта.

Преципитат, томасшлак, термофосфаты, Обесфторенный фосфат

Преципитат — СаНРО4 -2 Н2О — двухзамещенный фосфат кальция (дикальцийфосфат) содержит 38% фосфора в расчете на P2O5. Получается путем кислотной переработки фосфатов при осаждении фосфорной кислоты известковым молоком или мелом, а также в качестве отхода при желатиновом производстве.

Фосфор преципитата не растворим в воде, но растворяется в лимонно-кислом аммонии и хорошо усваивается растениями. Удобрение обладает ценными физическими свойствами: не слеживается, сохраняет хорошую рассеваемость, может смешиваться с любым удобрением. Преципитат можно применять как основное удобрение под различные культуры на всех почвах. Его фосфор меньше, чем суперфосфата, закрепляется в почве, поэтому преципитат более эффективен на богатых полуторными окислами кислых почвах и карбонатных сероземах. На черноземах преципитат близок по эффективности к суперфосфату.

Фосфатшлак мартеновский — побочный продукт переработки мартеновским способом богатых фосфором чугунов на сталь и железо. Содержит фосфор в основном в виде силикофосфатов и свободную окись кальция. Состав может быть условно представлен как 4СаО+ P2O5CaSiO 3. Применяемый в качестве удобрений фосфатшлак должен содержать не менее 10% растворимого в 2%-ной лимонной кислоте фосфора (в расчете на РаО5) и иметь тонкий помол (80% продукта должно проходить через сито с диаметром 0,18 мм). Может использоваться как основное удобрение на всех почвах, но наиболее эффективен благодаря щелочным свойствам на кислых дерново-подзолистых и серых лесных почвах. Фосфатшлак нельзя смешивать с аммонийными удобрениями во избежание потерь азота в форме аммиака.

Подобными свойствами обладает томасшлак — 4СаО ·P2O5 +4СаО·P2O5 -CaSiO 3 — побочный продукт при переработке богатых фосфором чугунов на сталь и железо по щелочному способу Томаса. В мировом производстве фосфорных удобрений томасшлак занимает существенное место. В нашей стране томасшлак (производимый из керченских руд) применяется в ограниченных количествах. В нем должно содержаться не менее 14% растворимого в 2%-ной лимонной кислоте фосфора в расчете на P2O5.

Термофосфаты — Na 2O-3CaO-P 2O 5 + SiO 2 — получают сплавлением или спеканием размолотого фосфорита или апатита с щелочными солями — содой или поташом, или природными магниевыми силикатами, а также с сульфатами калия, натрия и магния. При этом образуются усвояемые растениями кальциево-натриевые или кальциево-калиевые фосфорнокислые соли, а также другие фосфаты и силикофосфаты.

Термофосфаты содержат 20—30% лимонно-растворимого фосфора в расчете на P2O5. По свойствам и эффективности они близки к томасшлаку. Могут применяться как основное удобрение на всех почвах, но как щелочные удобрения эффективнее на кислых почвах.

При сплавлении фосфорита или апатита с силикатами магния получаются плавленые магниевые фосфаты. Они содержат 19—21% усвояемого лимонно-растворимого фосфора в расчете на P2O5 и 8—14% MgO, особенно эффективны на бедных магнием легких песчаных и супесчаных почвах. Термофосфаты также применяют как основное удобрение и их нельзя смешивать с аммонийными удобрениями.

Обесфторенный фосфат получают из апатита путем обработки водяным паром смеси апатита с небольшим количеством кремнезема (2—3% SiO2 при температуре 1450— 1550 °С. При этом разрушается кристаллическая решетка фторапатита и удаляется фтор в газообразной форме, а фосфор переходит в усвояемую (лимонно-растворимую) форму.

Обесфторенный фосфат содержит не менее 36% P2O5, растворимой в 0,4%-ной НСl. Удобрение негигроскопично, не слеживается. Тонина помола такова, что 95% продукта должны проходить через сито диаметром 0,15 мм.

Обесфторенный фосфат, так же как томасшлак, нельзя смешивать с аммонийными удобрениями. Может применяться как основное удобрение на всех почвах. На дерново-подзолистых и черноземных почвах по эффективности не уступает суперфосфату.

Фосфоритная мука

Получается путем размола фосфорита до состояния тонкой муки. Фосфор в ней содержится в виде соединений фторапатита, гидр ок си л апатита, карбоната патита (то есть находится в основном в форме трехкальциевого фосфата Са3(PO4)2 Эти соединения не растворимы в воде и слабых кислотах и слабодоступны для большинства растений.

Фосфоритная мука негигроскопична, не слеживается, может смешиваться с любым удобрением, кроме извести. Туковая промышленность выпускает четыре сорта фосфоритной муки с общим содержанием P2O5 высший сорт — 30%; 1-й — 25; 2-й — 22; 3-й — 19%.

Для изготовления фосфоритной муки могут быть использованы низкопроцентные фосфориты, непригодные для химической переработки в суперфосфат. Фосфоритная мука — самое дешевое фосфорное удобрение.

Эффективность фосфоритной муки зависит от состава фосфоритов, тонины помола, особенностей растений, свойств почвы и сопутствующих удобрений. Фосфориты желва-кового типа, более молодые по геологическому возрасту и не имеющие хорошо выраженного кристаллического строения, доступнее для растений. При их размоле получается мука, пригодная для непосредственного удобрения. Фосфориты более древнего происхождения, имеющие кристаллическое строение (например, фосфориты Каратау), труднодоступны и поэтому непригодны для приготовления фосфоритной муки.

Информация о работе Производители удобрений