Автор работы: Пользователь скрыл имя, 15 Февраля 2012 в 21:12, контрольная работа
Вода является главной составной частью растений. Ее содержание неодинаково в разных органах растения (так, в листьях салата она составляет 95 %, а в сухих семенах - не более 10 % от массы ткани) и зависит от условий внешней среды, вида и возраста растения. Для своего нормального существования растение должно содержать определенное количество воды. Два процесса – поступление и испарение воды – называют водным балансом.
3.1. Значение
воды для растения
Вода является главной составной частью растений. Ее содержание неодинаково в разных органах растения (так, в листьях салата она составляет 95 %, а в сухих семенах - не более 10 % от массы ткани) и зависит от условий внешней среды, вида и возраста растения. Для своего нормального существования растение должно содержать определенное количество воды. Два процесса – поступление и испарение воды – называют водным балансом.
Вода - это среда,
в которой протекают процессы
обмена веществ. Все реакции гидролиза,
окислительно-
Заряды в молекуле воды распределены неравномерно, так как атом кислорода воды оттягивает электроны от атомов водорода. Поэтому молекула воды представляет собой диполь: один полюс молекулы заряжен положительно, а другой отрицательно. Благодаря этому молекулы воды могут ассоциировать друг с другом, ионами и белковыми молекулами. Вода участвует в поглощении и транспорте веществ, так как является хорошим растворителем. Гидратные оболочки, окружающие ионы, ограничивают их взаимодействие.
Вода обладает высокой теплоемкостью - 1кал/град, что позволяет растению воспринимать изменения температуры окружающей среды в смягченном виде. Испарение воды растениями - транспирация служит основным средством терморегуляции у растений. Растения испаряют очень много воды. Большой расход воды связан с тем, что растения обладают значительной листовой поверхностью, необходимой для поглощения углекислого газа, содержание которого в воздухе незначительно (0,032 %).
3.3. Формы воды
в растении
Вода в растении состоит из фракций, различающихся по своей подвижности из-за связи с различными соединениями. 85-90 % воды приходится на более подвижную фракцию. В эту фракцию входит резервная вода, заполняющая вакуоли и другие компартменты клетки. Она осмотически связана с сахарами, органическими кислотами, минеральными солями и другими растворенными в ней веществами. Осмотически связанной водой называют воду, образующую периферические слои гидратационных оболочек вокруг ионов и молекул. К подвижной фракции относят и интерстициальную воду, выполняющую транспортную функцию и находящуюся в клеточных стенках, межклетниках и сосудах растения.
Фракция малоподвижной
воды составляет 10-15 % всей воды клетки.
Это конституционная вода, химически
связанная и входящая в состав
неорганических соединений, а также
гидратационная вода, образующая оболочки
вокруг молекул веществ. Воду, гидратирующую
мицеллы, называют коллоидносвязанной.
Молекулы воды располагаются вокруг
мицеллы несколькими слоями. Ближайший
к поверхности мицеллы слой воды
очень прочно связан. За этим слоем
следуют все менее прочно связанные
слои, молекулы которых могут обмениваться
с молекулами свободной воды. Коллоидносвязанная
вода необходима для нормального функционирования
клетки и ее устойчивости при попадании
в неблагоприятные условия.
Коллоидные мицеллы могут гидратироваться
не только путем присоединения молекул
воды к гидрофильным группам, расположенным
на поверхности - это так называемая мицеллярная
гидратация, но и путем внедрения молекул
воды внутрь мицеллы и присоединения к
имеющимся здесь активным гидрофильным
радикалам. Такая гидратация называется
пермутоидной.
42
3.6. Транспирация
Транспирация - это испарение воды растением. Основным органом транспирации является лист. Вода испаряется с поверхности листьев через клеточные стенки эпидермальных клеток и покровные слои (кутикулярная транспирация) и через устьица (устьичная транспирация). В результате потери воды в ходе транспирации в клетках листьев возрастает сосущая сила. Это приводит к усилению поглощения клетками листа воды из сосудов ксилемы и передвижению воды по ксилеме из корней в листья. Таким образом, верхний концевой двигатель, участвующий в транспорте воды вверх по растению, обусловлен транспирацией листьев. Верхний концевой двигатель может работать при полном отключении нижнего концевого двигателя, причем для его работы используется не только метаболическая энергия как в корне, но и энергия внешней среды - температура и движение воздуха.
Транспирация спасает растение от перегрева. Температура сильно транспирирующего листа может примерно на 7 Со быть ниже температуры нетранспирирующего завядшего листа. Кроме того, транспирация участвует в создании непрерывного тока воды с растворенными минеральными и органическими соединениями из корневой системы к надземным органам растения.
Транспирацию обычно выражают в следующих единицах. Интенсивность транспирации - это количество воды, испаряемой растением в г за единицу времени в часах единицей поверхности в дм2. Эта величина колеблется от 0,15 до 1,5. Транспирационный коэффициент - это количество воды в г, испаряемой растением при накоплении им 1 г сухого вещества. Продуктивность транспирации - это величина, обратная транспирационному коэффициенту и равна количеству сухого вещества в г, накопленного растением за период, когда оно испаряет 1 кг воды. Относительная транспирация - это отношение воды, испаряемой листом, к воде, испаряемой со свободной водной поверхности той же площади за один и тот же период времени. Экономность транспирации - это количество испаряемой воды в мг на 1 кг воды, содержащейся в растении.
Кутикулярная
транспирация. Снаружи листья имеют
однослойный эпидермис, внешние стенки
клеток которого покрыты кутикулой и воском,
образующие эффективный барьер на пути
движения воды. На поверхности листьев
часто развиты волоски, которые также
влияют на водный режим листа, так как
снижают скорость движения воздуха над
его поверхностью и рассеивают свет и
тем самым уменьшают потери воды за счет
транспирации. Интенсивность кутикулярной
транспирации варьирует у разных видов
растений. У молодых листьев с тонкой кутикулой
она может составлять около половины всей
транспирации. У зрелых листьев с более
мощной кутикулой кутикулярная транспирация
равна 1/10 общей транспирации. В стареющих
листьях из-за повреждения кутикулы она
может возрастать. Таким образом, кутикулярная
транспирация регулируется главным образом
толщиной и целостностью кутикулы
и других защитных покровных слоев на
поверхности листьев.
55
5.1. Пигменты
5.1.1. Хлорофиллы
У всех высших растений, водорослей и цианобактерий содержится хлорофилл a, хлорофилл b имеется у высших растений и зеленых водорослей. Хлорофилл с, лишенный фитола, содержится в бурых и диатомовых водорослях, хлорофилл d – в красных водорослях. Фотосинтезирующие зеленые бактерии имеют бактериохлорофиллы c и d, пурпурные бактерии - бактериохлорофиллы a и b.
У хлорофилла а четыре пиррольных кольца соединены между собой метиновыми мостиками (=СН-), образуя порфириновое кольцо. Кроме того, атомы азота пиррольных колец связаны с атомом магния. С порфириновым ядром соединено циклопентановое кольцо, образованное остатком кетопропионовой кислоты и содержащее активные карбонильную (С=О) и метилированную карбоксильную (О=С-О-СН3) группы. Структура, состоящая из порфиринового ядра и циклопентанового кольца, называется форбином. Боковая цепь, состоящая из пропионовой кислоты и непредельного спирта фитола, связана с атомом углерода IV пиррольного кольца (рис. 5.1). Хлорофилл, лишенный фитола, называется хлорофиллидом. Если атом магния замещен протоном, то такое соединение носит название феофитина. Активность хлорофиллов, также как и других пигментов, обусловлена наличием большого количества двойных связей с делокализованными электронами.
Рис. 5.1. Структурные
формулы хлорофиллов a
и b (по В. В. Полевому).
Хлорофиллы хорошо
растворимы в органических растворителях
(этиловом эфире, бензоле, хлороформе,
ацетоне, этиловом спирте) и нерастворимы
в воде. Хлорофиллы имеют максимумы
поглощения света в красной и
синей частях спектра. Растворы хлорофиллов
обладают флуоресценцией и фосфоресценцией.
5.1.2. Каротиноиды
Каротиноиды – жирорастворимые пигменты, присутствующие в хлоропластах всех растений. Они входят в состав хромопластов в незеленых частях растений, например, корнеплодов моркови. К каротиноидам относят 3 группы соединений: 1) оранжевые или красные каротины, 2) желтые ксантофиллы, 3) каротиноидные кислоты. Каротины и ксантофиллы состоят из 8 остатков изопрена, которые образуют цепь конъюгированных двойных связей (рис. 5.2). Основные каротиноиды - b-каротин, лютеин, виолаксантин и неоксантин.
Рис. 5.2. Структурные
формулы каротиноидов и последовательность
их превращений (по В. В. Полевому).
Каротины и ксантофиллы растворимы в хлороформе, бензоле, сероуглероде, ацетоне. Каротины хорошо растворяются в эфирах, но плохо в спиртах, а ксантофиллы наоборот. Каротиноиды имеют максимумы поглощения в фиолетово-синей и синей частях спектра света. Они не способны к флуоресценции.
Главные функции
каротиноидов: поглощение света в
качестве дополнительных пигментов, защита
молекул хлорофиллов от необратимого
фотоокисления, тушение активных радикалов,
участие в фототропизме, так как
способствуют определению направления
роста побега.
5.1.3. Фикобилины
Сине-зеленые и красные водоросли помимо хлорофилла а и каротиноидов содержат пигменты фикобилины. Их молекула состоит из 4 последовательных пиррольных колец (рис. 5.3). Фикобилины являются хромофорными группами глобулиновых белков фикобилипротеинов. Они делятся на 3 группы: 1) фикоэритрины – белки красного цвета, 2) фикоцианины – сине-голубые белки и 3) аллофикоцианины – синие белки. Все они обладают флуоресценцией и растворимы в воде.
Рис. 5.3. Структурные
формулы фикобилинов (по В. В. Полевому).
Фикобилины имеют максимумы поглощения в оранжевой, желтой и зеленой частях спектра света. Это позволяет водорослям полнее использовать свет, проникающий в воду. Вода обладает светопоглощающей способностью. На глубине около 30 м полностью исчезают красные лучи, около 180 м – желтые, 320 м – зеленые, а на глубину более 500 м не проникают синие и фиолетовые лучи. Фикобилины – это дополнительные пигменты, участвующие в светособирающем комплексе. Около 90 % энергии света, поглощенного фикобилинами, передается на хлорофилл а.
У растений имеется фикобилин фитохром. Он не участвует в фотосинтезе, но является фоторецептором красного и дальнего красного света и выполняет регуляторные функции в клетках растений.
73
5.3. Темновая
фаза фотосинтеза
5.3.1. С3-путь фотосинтеза или цикл Кальвина
Этот путь ассимиляции СО2 обнаружен у всех фотосинтезирующих растений. Он был назван циклом Кальвина в честь американского биохимика М. Кальвина, который с сотрудниками открыл и изучил его в 1946-1956 годах с помощью метода меченых атомов и хроматографии. Растения разное время подкармливали 14СО2 и хроматографировали экстракты. Радиоактивные изотопы по химическим свойствам не отличаются от стабильных. Принимая участие в реакциях, они помечают те соединения, в которые входят. Цикл состоит из трех этапов: карбоксилирования, восстановления, регенерации первичного акцептора СО2 и синтеза конечного продукта фотосинтеза (рис. 5.5).
Рис. 5.5. Цикл Кальвина (С3-путь фотосинтеза.
1 – фосфорибулокиназа,
2 –
1. Карбоксилирование. Фосфорибулокиназа фосфорилирует при участии АТФ рибулозо-5-фосфат с образованием АДФ и рибулозо-1,5-дифосфата. Последний является акцептором СО2 и под действием рибулозодифосфаткарбоксилазы присоединяет СО2. В результате образуются 2 молекулы 3-фосфоглицериновой кислоты (3-ФГК).
2. Восстановление. Фосфоглицераткиназа при участии АТФ фосфорилирует 3-ФГК и образовавшаяся 1,3-дифосфоглицериновая кислота восстанавливается с помощью НАДФН и дегидрогеназы фосфоглицеринового альдегида до 3-фосфоглицеринового альдегида (3-ФГА).
3. Регенерация. После фиксации трех молекул СО2 и образования шести молекул 3-ФГА пять из них используются для синтеза рибулозо-5-фосфата, а одна молекула 3-ФГА – для образования глюкозы.
Триозофосфатизомераза
превращает 3-ФГА в фосфодиоксиацетон.
Затем альдолаза образует из 3-ФГА
и фосфодиоксиацетона фруктозо-1,6-дифосфат.
Он теряет один остаток фосфорной
кислоты под влиянием фруктозо-1,6-дифосфатазы
и превращается во фруктозо-6-фосфат.
Транскетолаза переносит