Автор работы: Пользователь скрыл имя, 18 Декабря 2011 в 14:47, реферат
Генетическая инженерия - конструирование in vitro функционально активных генетических структур (рекомбинантных ДНК), или иначе - создание искусственных генетических программ (Баев А. А.). По Э. С. Пирузян генетическая инженерия - система экспериментальных приемов, позволяющих конструировать лабораторным путем (в пробирке) искусственные генетические структуры в виде так называемых рекомбинантных или гибридных молекул ДНК.
Генетическая инженерия - получение новых комбинаций генетического материала путем проводимых вне клетки манипуляций с молекулами нуклеиновых кислот и переноса созданных конструкций генов в живой организм, в результате которого достигается их включение и активность в этом организме и у его потомства.
Введение в генетическую инженерию………………………………………..3
Методы генной инженерии…………………………………………………………....3
История генной инженерии…………………………………………………………...4
Основные ферменты: рестриктазы, лигазы, полимеразы………………………………...5
Генная инженерия растений…………………………………………………...5
Трансформация растительного генома…………………………………………………5
Введение генов в клетки растений - основные способы…………………………………..7
Экспрессия генетического материала в трансгенных растениях…………………………8
Введение ДНК в клетки растений с помощью Ti- и Ri-плазмид………………………….11
Возможности генной инженерии…………………………………………………..…16
Создание растений, устойчивых к насекомым-вредителям, вирусам и гербицидам………………………………………………………………..……..17
Библиографический список…………………………………………………..22
Новосибирский государственный аграрный университет
Кафедра
селекции и генетики
РЕФЕРАТ
ТЕМА:
Выведение растений
методами генной инженерии,
устойчивых к насекомым-вредителям,
вирусам и гербицидам.
СОДЕРЖАНИЕ
Введение в генетическую инженерию………………………………………..3
Методы
генной инженерии………………………………………………………
Введение ДНК в клетки растений с помощью Ti- и Ri-плазмид………………………….11
Возможности
генной инженерии…………………………………………………..
Создание
растений, устойчивых
к насекомым-вредителям,
вирусам и гербицидам…………………………
Библиографический
список…………………………………………………..22
Введение в генетическую инженерию
Методы генной инженерии
Генетическая инженерия - конструирование in vitro функционально активных генетических структур (рекомбинантных ДНК), или иначе - создание искусственных генетических программ (Баев А. А.). По Э. С. Пирузян генетическая инженерия - система экспериментальных приемов, позволяющих конструировать лабораторным путем (в пробирке) искусственные генетические структуры в виде так называемых рекомбинантных или гибридных молекул ДНК.
Генетическая инженерия - получение новых комбинаций генетического материала путем проводимых вне клетки манипуляций с молекулами нуклеиновых кислот и переноса созданных конструкций генов в живой организм, в результате которого достигается их включение и активность в этом организме и у его потомства. Речь идет о направленном, по заранее заданной программе конструировании молекулярных генетических систем вне организма с последующим введением их в живой организм. При этом рекомбинантные ДНК становятся составной частью генетического аппарата рецепиентного организма и сообщают ему новые уникальные генетические, биохимические, а затем и физиологические свойства.
Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека. Например, получение «биологических реакторов» - микроорганизмов, растений и животных, продуцирующих фармакологически значимые для человека вещества, создание сортов растений и пород животных с определёнными ценными для человека признаками. Методы генной инженерии позволяют провести генетическую паспортизацию, диагностировать генетические заболевания, создавать ДНК-вакцины, проводить генотерапию различных заболеваний.
Технология рекомбинантных ДНК использует следующие методы:
Генная инженерия появилась благодаря работам многих исследователей в разных отраслях биохимии и молекулярной генетики. На протяжении многих лет главным классом макромолекул считали белки. Существовало даже предположение, что гены имеют белковую природу. Лишь в 1944 году Эйвери, Мак Леод и Мак Карти показали, что носителем наследственной информации является ДНК. С этого времени начинается интенсивное изучение нуклеиновых кислот. Спустя десятилетие, в 1953 году Дж. Уотсон и Ф. Крик создали двуспиральную модель ДНК. Именно этот год принято считать годом рождения молекулярной биологии.
На
рубеже 50 - 60-х годов были выяснены
свойства генетического кода, а к
концу 60-х годов его
Историю развития генетической инженерии можно условно разделить на три этапа.
Первый этап связан с доказательством принципиальной возможности получения рекомбинантных молекул ДНК in vitro. Эти работы касаются получения гибридов между различными плазмидами. Была доказана возможность создания рекомбинантных молекул с использованием исходных молекул ДНК из различных видов и штаммов бактерий, их жизнеспособность, стабильность и функционирование.
Второй этап связан с началом работ по получению рекомбинантных молекул ДНК между хромосомными генами прокариот и различными плазмидами, доказательством их стабильности и жизнеспособности.
Третий этап - начало работ по включению в векторные молекулы ДНК (ДНК, используемые для переноса генов и способные встраиваться в генетический аппарат клетки-рецепиента) генов эукариот, главным образом, животных.
Формально датой рождения генетической инженерии следует считать 1972 год, когда в Стенфордском университете П. Берг, С. Коэн, Х. Бойер с сотрудниками создали первую рекомбинантную ДНК, содержавшую фрагменты ДНК вируса SV40, бактериофага и E. coli.
Генетическая
инженерия - потомок молекулярной генетики,
но своим рождением обязана
Только они могут найти определенные последовательности нуклеотидов, "разрезать" там молекулу или, наоборот, "заштопать" дырку в цепи ДНК. Эти ферменты издавна работают в клетке, выполняя работы по репликации (удвоению) ДНК при делении клетки, репарации повреждений (восстановлению целостности молекулы), в процессах считывания и переноса генетической информации из клетки в клетку или в пределах клетки. Задача генного инженера - подобрать фермент, который выполнил бы поставленные задачи, то есть смог бы работать с определенным участком нуклеиновой кислоты.
Следует отметить, что ферменты, применяемые в генной инженерии, лишены видовой специфичности, поэтому экспериментатор может сочетать в единое целое фрагменты ДНК любого происхождения в избранной им последовательности. Это позволяет генной инженерии преодолевать установленные природой видовые барьеры и осуществлять межвидовое скрещивание.
Ферменты,
применяемые при
- ферменты, с помощью которых получают фрагменты ДНК (рестриктазы);
- ферменты, синтезирующие ДНК на матрице ДНК (полимеразы) или РНК (обратные транскриптазы);
- ферменты, соединяющие фрагменты ДНК (лигазы);
-
ферменты, позволяющие осуществить
изменение структуры концов
Генетическая
конструкция, вводимая в растительную
клетку обычно включает: белок-кодирующую
структурную
Наиболее важными из регуляторных последовательностей являются проксимальный участок промотора, связывающий РНК-полимеразу; участок, кодирующий 5'-конец мРНК, необходимый для связывания с рибосомой и инициации трансляции, и эукариотический сигнал полиаденилирования на З'-конце мРНК. Среди эукариотических организмов эти конститутивные сигнальные элементы оказались, к счастью, высококонсервативными и достаточно универсальными, так что растительные клетки в основном правильно экспрессируют чужеродные гены не только растений других видов, но и млекопитающих, дрожжей и других эукариот.
Однако для генов бактериального происхождения необходима замена их конститутивных сигнальных элементов на соответствующие эукариотические. Помимо этого, для лучшей экспрессии гена на уровне трансляции мРНК желательно приблизить набор кодонов к типичному для растения. Обычно для этого посредством направленных точечных мутаций заменяют "редкие" кодоны на синонимичные "частые", что не сказывается на первичной структуре белка. В результате экспрессия гена может быть усилена до 300 раз.
Иногда
в структурной части генов
прокариотического
Минимальный промотор, связывающий РНК-полимеразу, как правило, недостаточен для обеспечения заметного, а тем более тканеспецифичного уровня транскрипции. Для усиления экспрессии встроенного гена и придания ей заданных характеристик используют полноразмерные промоторы, включающие энхансеры (усилители) и (или) фактор-зависимые цис-элементы. Это приводит к тому, что подготовленный для трансформации ген, как правило, является химерным, т.е. включает фрагменты ДНК из одного вида, соединенные с фрагментами ДНК из другого вида.
Набор известных к настоящему дню промоторов достаточно разнообразен и постоянно пополняется. Конститутивные промоторы применяются для наработки существенных количеств продукта гена во всем растении. Для двудольных растений такими эффективными промоторами являются, например, 35S-промотор вируса мозаичности цветной капусты (CaMV) и nos-промотор гена нопалин-синтазы агробактерий; для однодольных - промоторы гена алкогольдегидрогеназы кукурузы (Adh) и гена актина 1 риса (Act).
Помимо конститутивных, известно большое число специфических промоторов, которые активны лишь в отдельных органах, тканях или клетках, либо на отдельных стадиях онтогенеза растения. Примером может служить промотор гена пататина картофеля, работающий практически только в клубнях. Имеются также промоторы, активность которых проявляется в листьях, корнях, меристемах и других местах специфической локализации. Интенсивно изучаются и используются также индуцибельные промоторы, которые активируются лишь при определенных условиях: температуры, освещения, концентрации фитогормонов и т.д.
Многие из таких промоторов достаточно универсальны, например, некоторые промоторы генов теплового шока. В частности, промотор гена hsp70 из дрозофилы равно эффективен в клетках растений. Особый интерес представляют промоторы, индуцируемые низкомолекулярными химическими эффекторами, часто не свойственными растениям. В зависимости от типа промотора, индукторами могут служить тетрациклин, дексаметазон, бензотиадиазол, этанол, ионы меди и другие соединения. Эти промоторы очень важны для фундаментальных исследований трансгенных растений, позволяя четко дифференцировать первичные и вторичные эффекты изучаемого гена и тем самым прояснить его истинную биологическую функцию. Они перспективны также для биотехнологии, так как позволяют вызвать экспрессию гена в заданный период, когда она уже либо не препятствует нормальному росту и развитию растения, либо не вызывает иных отрицательных последствий.