Превращение микроорганизмами соединений фосфора, серы и железа

Автор работы: Пользователь скрыл имя, 22 Ноября 2011 в 17:03, реферат

Краткое описание

Эубактерии, у которых источником энергии служат процессы окисления неорганических соединений, были обнаружены в конце CICвека и их открытие связано с именем С.Н. Виноградского. В качестве источников энергии хемолитотрофы могут использовать довольно широкий круг неорганических соединений, окисляя их при дыхании. Дыхательные цепи хемолитотрофов содержат те же типы переносчиков, что и хемоорганотрофов. Разнообразие наблюдается только на периферических участках энергетического метаболизма, т. к. для окисления неорганических соединений, связаного с получением энергии, необходимы соответствующие ферментные системы.

Содержание работы

Введение . . . . . . . . . . . 3

Превращение соединений фосфора . . . . . . 4

Превращение соединений серы . . . . . . . 5

Превращение соединений железа . . . . . . . 8

Заключение . . . . . . . . . . 13

Список литературы . . . . . . . . . 14

Содержимое работы - 1 файл

микробы.doc

— 89.00 Кб (Скачать файл)

Министерство  Общего и Профессионального Образования 

Российской  Федерации 

Уральский государственный технический университет  – УПИ 

кафедра технологии органического синтеза. 
 
 
 

Реферат на тему:

Превращение микроорганизмами соединений фосфора, серы и железа. 
 
 
 
 
 
 
 

                   студент:

                   группа:

                   преподаватель: 
               
               
               
               
               

Екатеринбург, 2005

Оглавление

Введение  . . . . . . . . . . .  3

Превращение соединений фосфора  . . . . . .  4

Превращение соединений серы . . . . . . .  5

Превращение соединений железа . . . . . . .  8

Заключение  . . . . . . . . . . 13

Список литературы . . . . . . . . . 14

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Введение.

    Эубактерии, у которых источником энергии  служат процессы окисления неорганических соединений, были обнаружены в конце CIC века и их открытие связано с именем С.Н. Виноградского. В качестве источников энергии хемолитотрофы могут использовать довольно широкий круг неорганических соединений, окисляя их при дыхании. Дыхательные цепи хемолитотрофов содержат те же типы переносчиков, что и хемоорганотрофов. Разнообразие наблюдается только на периферических участках энергетического метаболизма, т. к. для окисления неорганических соединений, связаного с получением энергии, необходимы соответствующие ферментные системы.

      Рассмотрим превращения бактериями, пожалуй, самых распространенных из неорганических веществ соединений: фосфора, серы и железа.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Превращение соединений фосфора.

    Фосфор  имеет большое значение в жизнедеятельности  организма. Без фосфора не могут  синтезироваться белки, он в большом  количестве входит в состав ядерного вещества и многих ферментов, участвует в так называемых реакциях фосфорелирования. Некоторые фосфорорганические компоненты – носители больших запасов энергии (нуклеиновые кислоты, липиды и др.).

    В почве имеется много фосфора. По расчетам, его количество составляет 3 – 5 т/га. Особенно много этого элемента в черноземах, богатых гумусом (5 – 6 т/га). Фосфор в почве содержится в основном в органической, неусвояемой растением формой и в виде трудноусвояемых минеральных соединений. Органические соединения фосфора попадают в почву вместе с растительными остатками, а также с отмирающими микроорганизмами. Они представлены нуклеопротеидами, нуклеиновыми кислотами и т.д.

    Работами  многих авторов была подтверждена роль микроорганизмов в превращении органических соединений фосфора в доступную для растений форму. Однако выделить культуру фосфорных микробов в чистом виде удалось только в 1935 г. Р. М. Менкиной. Ею были выявлены две разные группы микробов: спорообразующие и не обладающие таким свойством.

    Из  разнообразия фосфорных микроорганизмов  наибольший интерес представляют спорообразующие  формы, так как они используются для приготовления бактериального удобрения фосфобактерина. Их относят  к виду Bac. Megaterium var. phosphatium. Это крупные палочки с закругленными концами, плотной оболочкой и зернистой цитоплазмой. Размеры клеток 5 – 6 мкм в длину и 1,8 – 2 мкм в ширину. В ранней стадии клетки расположены поодиночно и слабоподвижны, в дальнейшем они располагаются попарно или короткими цепочками и становятся неподвижными. При старении концы клеток приобретают конусообразную форму.

    Клетки  богаты органическими соединениями фосфора, нуклеопротеидами, образуют овальные эндоспоры, расположенные внутри клетки. Окрашиваются клетки по Граму, аэробы. Оптимальная температура роста 37°C. Колонии резкоокаймленные грязновато-белого цвета. Старые колонии вначале желтеют, а затем приобретают бурую окраску. На среде, содержащей фосфорорганические соединения и мел, вокруг колонии под влиянием кислот образуются зоны просветления. Фосфорные микробы энергично расщепляют органические соединения фосфора, освобождают  фосфор в виде минеральных легкорастворимых солей фосфорной кислоты, доступных для растений. Чем больше таких микробов в почве, тем больше в ней доступного фосфора.

    В те почвы, которые бедны легкодоступным фосфором вносят фосфоробактерин. Это бактериальное удобрение может храниться в сухом виде более года, легко транспортируется и не боится низких температур. Можно одновременно проводить бактеризацию и протравливание семян. Протравитель заметного действия на споры микробов не оказывает.

    Сущность  действия фосфобактерина заключается  в том, что микробы, попадая вместе с семенами в почву, способствует минерализации органического фосфора  и тем самым улучшают фосфорное питание растений. Полезное действие микробов состоит еще и том, что они активизируют развитие других полезных групп микроорганизмов: нитрификаторов и азотфиксаторов.

    Наряду  с бактериями все большее внимание в усвоении фосфора и других элементов  растениями не только экзогенным, но и эндогенным путем уделяется микоризным грибам. Микориза (грибокорень) живет в симбиозе с растением как на поверхности корней, так и внутри их. В чистой культуре на искусственных средах такие грибы пока не получены. Но известно, что микоризованные корни растений наиболее устойчивы к инфекционным болезням, больше усваивают минеральных и биологически активных веществ. Все это повышает жизнеспособность и урожайность сельскохозяйственных культур. Так, учеными исследовательского института сельского хозяйства Индии выведены бактерии, которые способствуют переводу фосфатов в растворимые соединения, а они лучше усваиваются растениями, и как результат, урожайность пшеницы, картофеля и бобовых повышается на 10 – 50 %. 
 

    Превращение соединений серы.

       Сера  содержится в организме животных и растений, входит в состав серосодержащих аминокислот (цистеин, цистин, метионин), витаминов группы B (биотин, тиамин), много ее в волосах и перьях. Органические соединения серы в почве представлены остатками животных и растений. Минерализация серы осуществляется микроорганизмами, которые в аэробных условиях доводят ее до сульфатов, а в анаэробных – восстанавливают серосодержащие белки до сероводорода  и частично до меркаптанов.

       Восстановленные соединения серы окисляют автотрофные (фотолитотрофы, хемолитотрофы) микробы. Среди них различают нитчатые, тионовые и фотосинтезирующие. Нитчатые хемолитотрофные серобактерии – аэробы и относятся к родам Beggiatoa, Theatric, Thioploca и другим. Beggiatoa по форме представляет длинные нити, которые состоят из множества клеток, окисляют сульфиды до сульфатов. Промежуточным продуктом является элементарная сера, которая в виде шариков накапливается в клетках. Процесс происходит в два этапа по следующей схеме:

2H2S + O2 ® 2H2O + 2S + 532,1 кДж;

2S + 3O2 + 2H2O ® 2H2SO4 + 1231,9 кДж.

       Виды  рода Beggiatoa различают по толщине нитей. Они растут в тех водоемах, где происходит разложение органического вещества с выделением водорода.

       Тионовые хемолитотрофные бактерии представляют собой грамотрицательные, неспорообразующие, подвижные палочки и относятся к роду Thiobaccilus. Они окисляют серу и ее соединения (сероводород, сульфиды и др.), которые накапливаются вне клетки.

       Фотосинтезирующие зеленые и пурпурные серобактерии (фотолитотрофы) в анаэробных условиях окисляют сероводород до серы, которая затем может превращаться в сульфаты. Они имеют округлую, палочковидную или извитую форму. Имеются виды, длина клеток которых достигает 100 мкм. Окислять серу в присутствии органических веществ способны и некоторые гетеротрофные микробы – Bac. Subtilis, Bac. Mesentericus, актиномицеты, дрожжи.

    В зонах анаэробиоза – в глубоких водоемах (некоторых морях, лиманах, озерах), а также в затопляемых, сильно увлажненных почвах, – происходит восстановление сульфатов до сероводорода. Такой процесс получил название десульфофикации (сульфатредукции). Сероводород – сильный яд, и при наличии его в среде больших количествах погибает все живое. Так в Черном море на глубине более 200 м концентрация сероводорода сильно возрастает и создаются условия, неблагоприятные для жизни. Продукты восстановления соединений серы образуются на морском дне, куда в большом количестве оседает органическое вещество.

       Сульфатредукция осуществляется микроорганизмами двух родов: Desulfovibrio и Desulfotomaculum. Их клетки не окрашиваются по Граму, но отличаются по форме и некоторым другим признакам. Представители рода Desulfovibrio – вибрионы, монотрихи – не образуют спор, растут при температуре около 30°C (мезофилы). Микробы рода Desulfotomaculum имеют палочковидную форму, образуют споры (бациллы), перитрихи и растут при температуре от 30 до 55°C. Один из видов этого рода – D. nigrificans – термофил (оптимальная температура роста 55°C), остальные: D. ruminis и D. orientis – мезофилы (оптимальная температура роста 30 – 37 °C).

       Микроорганизмы, восстанавливающие соединения серы, – облигатные анаэробы. В таких  условиях они в качестве конечного  акцептора водорода используют сульфат. Донором водорода служат различные  органические соединения и молекулярный водород. Процесс окисления органических соединений идет не до конца, основным продуктом бывает уксусная кислота, а побочным – сероводород. Образовавшийся газ может затем окисляться серобактериями, в результате чего накапливается биогенная сера.

       Наряду  с термофилами, ацидофилами, галофилами, метанобразующими и другими микроорганизмами обнаружены и серобактерии, которые  отнесены к третьей линии эволюции организмов – архебактериям. Среди  них определенный интерес представляет род Sulfolobus (Brock, Belly, Weiss, 1972).

       Клетки  этого рода имеют округлую форму. Не образуют спор и жгутиков, но имеют  пили. Не окрашиваются по Граму. Их стенка не содержит пептидогликана (муреина), а состоит из гликопротеиновых гексагонально  расположенных субъединиц. Устойчивы к некоторым антибиотикам, ингибирующим синтез пептидогликана. Трехслойная цитоплазматическая мембрана не содержит липидов (как и у других архебактерий), они заменены изопреноидными и гидроизопреноидными насыщенными углеводородами и простыми изопрениглицериновыми эфирами. Растут в аэробных условиях. На жидких средах образуют муть и нежную пленку. На агаре или полисиликатном геле – колонии беспигментные, гладкие и блестящие. Все виды Sulfolobus в присутствии углерода диоксида используют в качестве источника энергии элементарную серу, окисляют ее до серной кислоты и тем самым понижают pH среды до 1–1,5. Они аборигены высокотемпературных кислых экотопов вулканического происхождения – горячих источников и почв (сольфатар). Такие экотопы содержат много сульфидов и серы. Это богатейшие серой кислые почвы Йеллоустонского национального парка США, Исландии, Новой Зеландии, Курильской гряды, Камчатки и других мест.

       Бактерии  рода Sulfolobus могут быть использованы для выщелачивания металлов при высоких температурах из таких трудноокисляемых сульфидов, как пирит, халькопирит, молибден и др., а также удаления серных компонентов из каменного угля.

       Окисление неорганических восстановленных соединений серы с помощью фототрофных и  хемотрофных эубактерий является одним  из звеньев круговорота серы в природе. В первом случае процесс протекает в анаэробных условиях, во втором – в аэробных. Хемотрофы, окисляющие серу, обитают в морских и пресных водах, содержащих O2, в аэробных слоях почв разного типа. Поскольку эта группа объединяет организмы с разными физиологическими свойствами, ее представителей можно обнаружить в кислых горячих серных источниках, кислых шахтных водах, в водоемах со щелочной средой и высокой концентрацией NaCl.

Информация о работе Превращение микроорганизмами соединений фосфора, серы и железа