Основы биомеханического контроля

Автор работы: Пользователь скрыл имя, 12 Июня 2013 в 18:48, контрольная работа

Краткое описание

Человек становится объектом измерения с раннего детства. У новорожденного измеряют рост, вес, температуру тела, продолжительность сна и т. д. Позже, в школьном возрасте, в число измеряемых переменных включаются I знания и умения. Чем взрослее человек, чем шире круг | его интересов, тем многочисленнее и разнообразнее характеризующие его показатели. И тем труднее осуществить точные измерения. Как, например, измерить техническую и тактическую подготовленность, красоту движений, геометрию масс человеческого тела, силу, гибкость и т. п.? Об этом рассказывается в настоящем разделе.

Содержание работы

Измерение в биомеханике.


Технические средства и методики измерений: видеоциклография, электромиография, акселерометрия, гониометрия, тензодинамометрия.


Биомеханический контроль в волейболе.



Список литературы.

Содержимое работы - 1 файл

2 срс.doc

— 242.00 Кб (Скачать файл)

МИНИСТЕРСТВО  СПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

 

Федеральное государственное  бюджетное образовательное учреждение высшего профессионального образования.

«Волгоградская  государственная академия физической культуры»

 

Кафедра ЕНДиИТ

 

 

 

СРС№2 на тему:

«Основы биомеханического контроля».

 

 

 

 

 

Работу выполнил студент

II курса ДО, группа 211

Шевцов Сергей

 

 

Волгоград- 2013

 

ПЛАН:

 

 

  1. Измерение в биомеханике.

 

 

  1. Технические средства и методики измерений: видеоциклография, электромиография, акселерометрия, гониометрия, тензодинамометрия.

 

 

  1. Биомеханический контроль в волейболе.

 

 

 

  1. Список литературы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Измерение в биомеханике.

 

Человек становится объектом измерения с раннего  детства. У новорожденного измеряют рост, вес, температуру тела, продолжительность сна и т. д. Позже, в школьном возрасте, в число измеряемых переменных включаются I знания и умения. Чем взрослее человек, чем шире круг | его интересов, тем многочисленнее и разнообразнее характеризующие его показатели. И тем труднее осуществить точные измерения. Как, например, измерить техническую и тактическую подготовленность, красоту движений, геометрию масс человеческого тела, силу, гибкость и т. п.? Об этом рассказывается в настоящем разделе.

 В англоязычной  литературе по физическому воспитанию принят более широкий перечень двигательных качеств, в том числе способность выполнять упражнения на равновесие, танцевальные упражнения и т. д.

Шкалы измерений  и единицы измерений

Шкалой  измерения называется последовательность величин, позволяющая установить соответствие между характеристиками изучаемых объектов и числами. При биомеханическом контроле чаще всего используют шкалы наименований, отношений и порядка.

Шкала наименований — самая простая из всех. В этой шкале числа, буквы, слова или другие условные обозначения выполняют роль ярлыков и служат для обнаружения и различения изучаемых объектов. Например, при контроле за тактикой игры футбольной команды полевые номера помогают опознать каждого игрока.

Числа или слова, составляющие шкалу наименований, разрешается менять местами. И если их без ущерба для точности значения измеряемой переменной можно менять местами, то эту переменную следует измерять по шкале наименований. Например, шкала наименований используется при определении объема техники и тактики (об этом рассказывается в следующем разделе).

Шкала порядка  возникает, когда составляющие шкалу  числа упорядочены по рангам, ноу-интервалы между рангами нельзя точно измерить. Например, знания по биомеханике или навыки и умения на уроках физкультуры оцениваются по шкале: «плохо» — «удовлетворительно» — «хорошо» — «отлично». Шкала порядка дает возможность не только установить факт равенства или неравенства измеряемых объектов, но и определить характер неравенства в качественных понятиях: «больше — меньше», «лучше — хуже». Однако на вопросы: «На сколько больше?», «На сколько лучше?» — шкалы порядка ответа не дают.

С помощью шкал порядка измеряют «качественные» показатели, не имеющие строгой количественной меры (знания, способности, артистизм, красоту и выразительность движений и т. п.).

Шкала порядка  бесконечна, и в ней нет нулевого уровня. Это и понятно. Какой бы неправильной ни была, например, походка или осанка человека, всегда можно встретить еще худший вариант. И с другой стороны, какими бы красивыми и выразительными не были -двигательные действия гимнастки, всегда найдутся пути сделать их еще прекраснее.

Шкала отношений  самая точная. В ней числа не только упорядочены по рангам, но и  разделены равными интервалами  — единицами измерения'. Особенность  шкалы отношений состоит в том, что в ней определено положение нулевой точки.

По шкале  отношений измеряют размеры и  массу тела и его частей, положение  тела в пространстве, скорость и  ускорение, силу, длительность временных  интервалов и многие другие биомеханические характеристики. Наглядными примерами шкалы отношений являются: шкала весов, шкала секундомера, шкала спидометра.

Шкала отношений  точнее шкалы порядка. Она позволяет  не только узнать, что один объект измерения (технический прием, тактический вариант и т. п.) лучше или хуже другого, но и дает ответы на вопросы, на сколько лучше и во сколько раз лучше. Поэтому в биомеханике стараются применять именно шкалы отношений и с этой целью регистрируют биомеханические характеристики.

 

 

  1. Технические средства и методики измерений: видеоциклография, электромиография, акселерометрия, гониометрия, тензодинамометрия.

 

 

1. подометрия — измерение временных характеристик шага;

2. гониометрия — измерение кинематических характеристик движений в суставах;

3. динамометрия — регистрация реакций опоры;

4. элекромиография — регистрация поверхностной ЭМГ;

5. стабилометрия — регистрация положения и движений общего центра давления на плоскость опоры при стоянии.

 

Электромиографические методы измерения

   Электромиография  — метод исследования нервно мышечной системы, основанный на регистрации и анализе биоэлектрических потенциалов.

   Электромиография  стрессовой реакции включает  в себя оценку влияния стрессовой реакции на поперечно полосатую мускулатуру. ЭМГ, в сущности, можно рассмотреть как косвенное определение мышечного напряжения. Оно является косвенным в том смысле, что измеряет электрохимическую активность нервов, иннервирующих данную поперечно полосатую мышцу, а не истинное напряжение, вызываемое сокращением мускулатуры. Активность поперечно полосатой мышцы стала рассматриваться как индикатор стрессовой реакции после одной из ранних работ Э. Якобсона (Edmund Jacobson, 1938), в которой он отметил существование высокой положительной корреляции между стрессовой активацией и напряжением поперечно полосатой мышцы.

   Хотя  и не безоговорочно, но многие  исследователи пришли к заключению, что регистрация ЭМГ активности лобной области может быть полезным индикатором генерализованной активности симпатической нервной системы. Практическое преимущество использования ЭМГ регистрации стрессовой реакции состоит в доступности для измерения мышечных групп. Большинство клиницистов работает с лобной мускулатурой, но и трапециевидная (верхние отделы), плече лучевая и грудино-ключично сосковая группы мышц также могут использоваться для измерения стрессовой ситуации.

   Амплитуды  биопотенциалов колеблются в  пределах от 10 мкВ до нескольких  милливольт. Частотный диапазон  сигналов от 1 до 20000 Гц (имеются ссылки некоторых авторов на наличие в ЭМГ составляющих с частотами порядка сотен килогерц).

   В электромиографии  используется два вида электродов  по конструктивному исполнению — поверхностные (накожные) и игольчатые (подкожные).

   Игольчатые  электроды позволяют регистрировать  потенциал действия одной или немногих близлежащих мышц. Такие электроды либо хирургически имплантируют, либо вводят с помощью иглы для подкожных инъекций. В полиграфе для съема ЭМГ используют поверхностные электроды, позволяющие измерить интерференционную (суммарную) ЭМГ. Поверхностные электроды можно разделить на металлические, емкостные, резистивные, резистивно-емкостные. В полиграфе наиболее удобно использовать плоские металлические электроды. Они представляют собой пластины или диски из серебра, стали, олова и т. д. площадью около 0,2–1 см2. Два таких электрода укрепляются на коже в том месте, где контурируется мышца, вдоль хода ее волокон. Для лучшего крепления на электроды накладывают эластическую манжету. Расстояние между электродами 2 см. Для стабилизации расстояния и более равномерного прижатия электродов к коже они вмонтированы в рамку из пластмассы. Для снижения межэлектродного сопротивления кожу перед наложением электрода протирают спиртом и смачивают изотоническим раствором хлорида натрия. Для снижения переходного сопротивления кожа — электрод на область кожно-электродного контакта наносят специальную электродную пасту.

   Независимо  от типа электродов различают  два способа отведения электрической  активности — моно и биполярный. В ЭМГ монополярным называется  такое отведение, когда один электрод располагается непосредственно вблизи исследуемого участка мышц, а второй — в удаленной от него области. Преимуществом монополярного отведения является возможность определить форму потенциала исследуемой структуры и истинную фазу отклонения потенциала. Недостаток заключается в том, что при большом расстоянии между электродами в запись вмешиваются потенциалы от других отделов мышцы или даже от других мышц.

   Биполярное  отведение — это такое отведение,  при котором оба электрода находятся на достаточно близком и одинаковом расстоянии от исследуемой области мышцы. Биполярное отведение в малой степени регистрирует активность от отдаленных источников потенциала, особенно при отведении игольчатыми электродами. Влияние на разность потенциалов активности, поступающей от источника на оба электрода, приводит к искажению формы потенциала и невозможности определить истинную фазу потенциала. Тем не менее, высокая степень локальности делает этот способ предпочтительным в клинической практике.

   Кроме электродов, разность потенциалов которых подается на вход усилителя ЭМГ, на кожу исследуемого устанавливают поверхностный электрод заземления, который присоединяют к соответствую щей клемме на электродной панели электромиографа. Цепь этого электрода закорачивает емкостную разность потенциалов между телом больного и землей и способствует ликвидации емкостных токов, возникающих в результате действия полей переменного промышленного тока.

   Современный электромиограф  представляет собой сложное устройство, состоящее из электродов для снятия биопотенциалов мышц, усилительного блока, осциллоскопа, интегратора ЭМГ, анализатора, репродуктора, вычислительного устройства и устройства вывода цифровой и графической информации.

   Часть электромиографа,  состоящая из усилительного блока и осциллоскопа, называется миоскопом.  Миоскоп имеет от одного до четырех независимых друг от друга усилительных блоков, что позволяет одновременно исследовать четыре электромиографических сигнала.

   Интегратор ЭМГ  применяют для обработки информации, заключенной на  электромиограмме. Анализатор ЭМГ необходим для выделения амплитуды отдельных составляющих частотного спектра ЭМГ для последующей их обработки. В современных электромиографах обработка полученной информации осуществляется с помощью ЭВМ.

 

Акселерометрические методы измерения

Акселерометры представляют собой датчики линейного ускорения  и в этом качестве широко используются для измерения углов наклона  тел, сил инерции, ударных нагрузок и вибрации . Они находят широкое применение на транспорте, в медицине, в промышленных системах измерения и управления, в инерциальных системах навигации. С 1965 года начали создавать акселерометры на базе технологии МЭМС .Уменьшение в размерах привело к массовому серийному производству. В настоящее время промышленность изготавливает много разновидностей акселерометров, имеющих различные принципы действия, диапазоны измерения ускорений и другие функциональные характеристики, массу, габариты и цены. По принципу действия различают следующие типы акселерометров: емкостные, пьезорезистивные, пьезоэлектрические, тензорезистивные, тепловые, туннельные. Акселерометры емкостного типа являются наиболее простыми, надежным и легко реализуемыми, что обусловливает их широкое распространение. Принцип их работы заключается в следующем. При ускорении движения вдоль оси чувствительности, происходит деформирование упругой подвески, которая является подвижным электродом, при этом неподвижный электрод расположен на поверхности подложки. Таким образом, изменяется расстояние между электродами, а следовательно, емкость конденсатора, образованного ими.

            При разработке и изготовлении  микромеханических акселерометров емкостного типа необходимо проводить контроль их характеристик. Методики измерения характеристик являются неотъемлемой частью производственного цикла изделий и служат для оперативного внесения корректировок в конструкции и технологии устройств на стадии разработки. В настоящей работе предложена методика измерения характеристик микромеханических акселерометров емкостного типа, обеспечивающих измерение ускорений в диапазоне от 0 до 500 м/с2 с точностью 0,05 м/с2, при этом масса образцов в корпусе не должна превышать 10 г, а размеры в плоскости – 3 см х 3 см.

Перед началом измерений  образцы акселерометров должны быть смонтированы в стандартный металлокерамический корпус. При этом контактные площадки на образцах должны быть приварены к контактным площадкам на корпусе при помощи ультразвуковой сварки.

Ускорение образца в установленном  диапазоне измерения задают при помощи вибростенда посредством регулировки амплитуды и частоты вибрации столика с закрепленным экспериментальным образцом.

 

Метод оптической компьютерной топографии

 

 

Стереофотограмметрия  с мнимым базисом. Геометрическая модель стереофотографии. Координаты фиксированной точки: X=90 , Y=112, Z=-24 мм.Важную информацию о геометрии тела человека, об особенностях и нарушении осанки можно получить при исследовании специальным методом компьютерной топографии. Этот современный и самый точный метод позволяет количественно с высокой точностью определить координаты любой анатомической точки поверхности тела. Продолжительность обследования составляет 1 — 2 минуты, поэтому этот метод с успехом применяется для массовых исследований.

Информация о работе Основы биомеханического контроля