Мембрана клетки

Автор работы: Пользователь скрыл имя, 13 Апреля 2013 в 11:24, реферат

Краткое описание

Клеточная мембрана - очень важная часть клетки. Она удерживает вместе все клеточные компоненты и разграничивает внутреннюю и наружную среду. Кроме того, модифицированные складки клеточной мембраны образуют многие органеллы клетки. Клеточная мембрана представляет собой двойной слой молекул (бимолекулярный слой, или бислой). В основном это молекулы фосфолипидов и других близких к ним веществ. Липидные молекулы имеют двойственную природу, проявляющуюся в том, как они ведут себя по отношению к воде.

Содержание работы

Общая информация
Емкость мембраны
Постоянная времени
Емкость в кабеле
Сенситизация и S интернейроны
Вывод

Содержимое работы - 1 файл

Реферат№2.doc

— 294.50 Кб (Скачать файл)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ  И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ


 

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ  ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И.УЛЬЯНОВА(ЛЕНИНА)


 

 

 

 

 

 

 

 

РЕФЕРАТ

по учебной дисциплине «Основы взаимодействия физических полей с биологическими объектами»

на тему: «Мембрана  клетки»

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Выполнила: Сосенкова  С.А.

Факультет: ИБС

Курс: III

Группа: 9502

Преподаватель: Прудников  И.М.

 

 

 

 

 

 

 

Санкт-Петербург

2012

 

Содержание

Общая информация

Емкость мембраны
Постоянная  времени

Емкость в кабеле

Сенситизация и S интернейроны

Вывод

 

 

КЛЕТОЧНАЯ МЕМБРАНА

 
Клеточная мембрана - очень важная часть клетки. Она удерживает вместе все клеточные компоненты и разграничивает внутреннюю и наружную среду. Кроме  того, модифицированные складки клеточной  мембраны образуют многие органеллы клетки. Клеточная мембрана представляет собой двойной слой молекул (бимолекулярный слой, или бислой). В основном это молекулы фосфолипидов и других близких к ним веществ. Липидные молекулы имеют двойственную природу, проявляющуюся в том, как они ведут себя по отношению к воде. Головы молекул гидрофильные, т.е. обладают сродством к воде, а их углеводородные хвосты гидрофобны. Поэтому при смешивании с водой липиды образуют на ее поверхности пленку, аналогичную пленке масла; при этом все их молекулы ориентированы одинаково: головы молекул - в воде, а углеводородные хвосты - над ее поверхностью. 
В клеточной мембране два таких слоя, и в каждом из них головы молекул обращены наружу, а хвосты - внутрь мембраны, один к другому, не соприкасаясь таким образом с водой. Толщина такой мембраны ок. 7 нм. Кроме основных липидных компонентов, она содержит крупные белковые молекулы, которые способны "плавать" в липидном бислое и расположены так, что одна их сторона обращена внутрь клетки, а другая соприкасается с внешней средой. Некоторые белки находятся только на наружной или только на внутренней поверхности мембраны или лишь частично погружены в липидный бислой. Основная функция клеточной мембраны заключается в регуляции переноса веществ в клетку и из клетки. Поскольку мембрана физически в какой-то мере похожа на масло, вещества, растворимые в масле или в органических растворителях, например эфир, легко проходят сквозь нее. То же относится и к таким газам, как кислород и диоксид углерода. В то же время мембрана практически непроницаема для большинства водорастворимых веществ, в частности для сахаров и солей. Благодаря этим свойствам она способна поддерживать внутри клетки химическую среду, отличающуюся от наружной. Например, в крови концентрация ионов натрия высокая, а ионов калия - низкая, тогда как во внутриклеточной жидкости эти ионы присутствуют в обратном соотношении. Аналогичная ситуация характерна и для многих других химических соединений. Очевидно, что клетка тем не менее не может быть полностью изолирована от окружающей среды, так как должна получать вещества, необходимые для метаболизма, и избавляться от его конечных продуктов. К тому же липидный бислой не является полностью непроницаемым даже для водорастворимых веществ, а пронизывающие его т.н. "каналообразующие" белки создают поры, или каналы, которые могут открываться и закрываться (в зависимости от изменения конформации белка) и в открытом состоянии проводят определенные иона (Na+, K+, Ca2+) по градиенту концентрации. Следовательно, разница концентраций внутри клетки и снаружи не может поддерживаться исключительно за счет малой проницаемости мембраны. На самом деле в ней имеются белки, выполняющие функцию молекулярного "насоса": они транспортируют некоторые вещества как внутрь клетки, так и из нее, работая против градиента концентрации. В результате, когда концентрация, например, аминокислот внутри клетки высокая, а снаружи низкая, аминокислоты могут тем не менее поступать из внешней среды во внутреннюю. Такой перенос называется активным транспортом, и на него затрачивается энергия, поставляемая метаболизмом. Мембранные насосы высокоспецифичны: каждый из них способен транспортировать либо только ионы определенного металла, либо аминокислоту, либо сахар. Специфичны также и мембранные ионные каналы. Такая избирательная проницаемость физиологически очень важна, и ее отсутствие - первое свидетельство гибели клетки. Это легко проиллюстрировать на примере свеклы. Если живой корень свеклы погрузить в холодную воду, то он сохраняет свой пигмент; если же свеклу кипятить, то клетки погибают, становятся легко проницаемыми и теряют пигмент, который и окрашивает воду в красный цвет. Крупные молекулы типа белковых клетка может "заглатывать". Под влиянием некоторых белков, если они присутствуют в жидкости, окружающей клетку, в клеточной мембране возникает впячивание, которое затем смыкается, образуя пузырек - небольшую вакуоль, содержащую воду и белковые молекулы; после этого мембрана вокруг вакуоли разрывается, и содержимое попадает внутрь клетки. Такой процесс называется пиноцитозом (буквально "питье клетки"), или эндоцитозом. Более крупные частички, например частички пищи, могут поглощаться аналогичным образом в ходе т.н. фагоцитоза. Как правило, вакуоль, образующаяся при фагоцитозе, крупнее, и пища переваривается ферментами лизосом внутри вакуоли до разрыва окружающей ее мембраны. Такой тип питания характерен для простейших, например для амеб, поедающих бактерий. Однако способность к фагоцитозу свойственна и клеткам кишечника низших животных, и фагоцитам - одному из видов белых кровяных клеток (лейкоцитов) позвоночных. В последнем случае смысл этого процесса заключается не в питании самих фагоцитов, а в разрушении ими бактерий, вирусов и другого инородного материала, вредного для организма. Функции вакуолей могут быть и другими. Например, простейшие, живущие в пресной воде, испытывают постоянный осмотический приток воды, так как концентрация солей внутри клетки гораздо выше, чем снаружи. Они способны выделять воду в специальную экскретирующую (сократительную) вакуоль, которая периодически выталкивает свое содержимое наружу. В растительных клетках часто имеется одна большая центральная вакуоль, занимающая почти всю клетку; цитоплазма при этом образует лишь очень тонкий слой между клеточной стенкой и вакуолью. Одна из функций такой вакуоли - накопление воды, позволяющее клетке быстро увеличиваться в размерах. Эта способность особенно необходима в период, когда растительные ткани растут и образуют волокнистые структуры. В тканях в местах плотного соединения клеток их мембраны содержат многочисленные поры, образованные пронизывающими мембрану белками - т.н. коннексонами. Поры прилежащих клеток располагаются друг против друга, так что низкомолекулярные вещества могут перегодить из клетки в клетку - эта химическая система коммуникации координирует их жизнедеятельность. Один из примеров такой координации - наблюдаемое во многих тканях более или менее синхронное деление соседних клеток.

МОДЕЛЬ КЛЕТОЧНОЙ МЕМБРАНЫ, демонстрирующая  положение белковых молекул относительно двойного слоя липидных молекул. Белки  большинства клеток, расположенные  на поверхности липидного бислоя или погруженные в него, могут  несколько смещаться в боковом  направлении. В клеточной мембране высших организмов присутствует также холестерин.

Каждая клетка должна обмениваться с внешней средой различными веществами и, в частности, ионами. Перенос  ионов через мембрану играет важную роль в процессах возбуждения клетки и передачи сигналов. Ионы проникают в клетку и выходят из неё через встроенные в мембрану белковые структуры — каналы и транспортёры[2]

Транспортёры — это мембранные белки, которые соединяются с переносимым веществом по одну сторону мембраны, переносят это вещество через мембрану и затем его освобождают. Такой перенос становится возможным потому, что в результате соединения с веществом транспортёр меняет конформацию (то есть форму, ориентацию). Важнейший транспортёр в клетках эукариот — это натрий-калиевый насос. Для работы этого насоса требуется энергия, которую он черпает из запасённой в клетке АТФ. За один цикл своей работы насос выводит из клетки 3 иона Naи вводит в неё 2 иона K+. Одна молекула этого транспортёра совершает примерно 10³ циклов в секунду. Сходная частота циклов характерна и для других видов транспортёров[3].

Каналы — это белки, которые выполняют функцию мембранных пор, так как формируют отверстия, сквозь которые могут проходить ионы. Мембранные каналы селективны — проницаемы только для определённых веществ. Селективность обусловлена радиусом пор и распределением заряженных функциональных групп в них. Существуют каналы, селективно пропускающие ионы натрия (натриевые каналы), а также калиевые, кальциевые и хлоридные каналы. Для каждого вида ионов существует не один, а довольно много видов каналов[4]. Сквозь один канал за секунду проходит 10— 10ионов[3].

Несмотря на фундаментальные различия в механизме транспорта через  каналы и транспортёры, они могут  быть образованы высокогомологичными  белками. Так, недавно получены данные, что мутация единственной аминокислоты в белке транспортёра двухвалентных металлов DMT1 приводит к его превращению в кальциевый канал. Кроме того, существует по крайней мере один транспортёр (хлорид-бикарбонатный обменник эритроцитов), осуществляющий 10переносов в секунду[3], что очень близко к скоростям, характерным для каналов, и заставляет предположить существование у него некоего «промежуточного» между каналами и транспортёрами механизма.

Структура мембранного белка (DMT1), который может превращаться из транспортёра в канал за счёт одной мутации

 

Так как ионы — это электрически заряженные молекулы, при их переходе через мембранные каналы переносится и заряд, а значит, через мембрану течёт электрический ток. Этот ток можно измерить. Чем больше разность потенциалов между сторонами мембраны, тем больше ток. Проводимость (отношение тока к разности потенциалов) одиночного канала в открытом состоянии варьирует в зависимости от вида канала, от 4-5 (у CFTR[5] и ENaC[6]) до 30—50 (например, у никотин-чувствительного холинорецептора[7] пикосименсов). Это значит, что при разности потенциалов, равной 100 мВ, через канал потечёт ток в несколько пикоампер.

Емкость мембраны

 

Мембрана клетки не только проводит ионные токи, но и накапливает  заряд на своей внешней или  внутренней поверхности. С точки  зрения теории электричества, разделение зарядов на мембране означает, что  мембрана обладает свойствами конденсатора. В общем виде конденсатор состоит из двух проводящих пластин, отделенных друг от друга изолирующим материалом; в промышленных конденсаторах проводящие пластины обычно сделаны из металлической фольги, а изолирующая прослойка между ними — из пластика. В случае нервной клетки проводниками являются два слоя жидкости, находящиеся по обе стороны мембраны, а сама мембрана играет роль изолирующей прослойки. При зарядке конденсатора от батареи на одной из пластинок накапливается положительный заряд, в то время как на второй пластинке создается равный по величине запас отрицательного заряда. Емкость конденсатора (С) определяется количеством заряда (Q), запасаемым на один вольт потенциала (V), приложенного к пластинам конденсатора: С = Q/V. С измеряется в кулонах, деленных на вольт, т. е. в фарадах (Ф). Чем ближе друг к другу расположены пластины, тем более эффективно конденсатор способен разделять и накапливать заряд. Поскольку толщина мембраны клетки всего 5 нм, она способна накапливать достаточно большой заряд. Обычно емкость мембраны нервных клеток составляет 1 мкФ/см2. Преобразовав выражение, получаем Q = CV. При потенциале покоя —80 мВ, количество избыточного отрицательного заряда на внутренней стороне мембраны составит (1 · 10–6) х (80 ·10–3) = 8· 10–8 кулонов, деленных на см2, что соответствует 5 · 1011 одновалентных ионов (0,8 пмоль) на квадратный сантиметр мембраны.

Величину тока, протекающего внутрь конденсатора или из него, можно  подсчитать на основе соотношения заряда и напряжения, учитывая, что ток (i, в амперах) есть скорость изменения заряда во времени, т.е. 1 ампер = (1 кулон)/(1 с). Поскольку Q = C/V, получим:

 

 

Скорость изменения  заряда на конденсаторе прямо пропорциональна величине тока. Если ток постоянен, то потенциал будет меняться с постоянной скоростью dV/dt = i/C.

Соотношение тока и напряжения в цепи, содержащей резисторы (сопротивления) и конденсаторы (емкости), соединенные  параллельно. Прямоугольный скачок тока величиной i, приложенный к резистору (R), создает скачок напряжения на резисторе величиной V = iR. Если тот же скачок тока приложить к конденсатору (С), то напряжение на конденсаторе будет накапливаться со скоростью dV/dt = i/C. Когда эти два элемента, резистор и конденсатор, соединены параллельно, то весь ток пойдет сначала на зарядку конденсатора со скоростью i/С; однако, как только на конденсаторе накопится какой-то заряд, ток потечет и через резистор. По мере нарастания тока, все большая его часть будет проходить через сопротивление, потому что скорость зарядки конденсатора будет постепенно снижаться. В конце концов весь ток будет течь через резистор, создавая на нем потенциал V = iR, a конденсатор будет полностью заряжен. По завершении скачка тока заряд из конденсатора постепенно рассеется на резисторе, а напряжение вернется к нулю. Из экспериментов на аксоне кальмара можно заключить, что гипотеза, высказанная Бернштейном в 1902 г., была близка к истине: трансмембранный градиент калия является важным, хотя и не единственным фактором, влияющим на мембранный потенциал. Чем можно объяснить отклонение экспериментальной кривой от уравнения Нернста? Оказывается, для этого достаточно снять ограничение с модели, состоящее в том, что мембрана непроницаема для ионов натрия. Мембрана реальной клетки действительно обладает натриевой проницаемостью, которая составляет от 1 до 10 % калиевой.

Для рассмотрения роли натриевой  проницаемости обратимся к модели идеальной клетки и временно исключим из поля зрения перемещение ионов хлора. Мембранный потенциал равен калиевому равновесному потенциалу, поэтому перемещение суммарного заряда через мембрану отсутствует, клетка находится в покое. Если теперь ввести в модель натриевую проницаемость, то натрий будет стремиться войти в клетку благодаря как своему концентрационному градиенту, так и мембранному потенциалу. По мере входа натрия на внутренней поверхности мембраны накапливается положительный заряд и мембрана деполяризуется. В результате ионы калия выходят из равновесия и начинают покидать клетку. С увеличением деполяризации мембраны движущая сила для входа натрия снижается, в то время как движущая сила для выхода калия возрастает. Процесс продолжается до тех пор, пока оба ионных потока не уравновесят друг друга. В этот момент изменение мембранного потенциала прекращается, поскольку какое-либо накопление заряда отсутствует. Вообще говоря, значение мембранного потенциала расположено между калиевым и натриевым равновесными потенциалами и определяется равновесием между калиевым и натриевым токами, равными по величине и направленными в противоположные стороны.

Ионы хлора также  участвуют в этом процессе, однако, как мы убедились ранее, равновесный  потенциал для хлора подстраивается под новое значение мембранного  потенциала за счет изменения внутриклеточной концентрации этого иона. По мере того как токи катионов постепенно приходят в равновесие, внутриклеточный уровень хлора возрастает до тех пор, пока суммарный хлорный ток не станет равным нулю.

 

Рис. 1. Распространение  потенциала вдоль аксона омара, регистрируемое с помощью поверхностного электрода.

Постоянная времени

Нарастание и спад потенциала происходит по экспоненциальной кривой, как показано на рис. 1В. Фаза роста описывается уравнением:

 

 

где t — время от начала импульса. Постоянная времени равна произведению RC. Это время, за которое потенциал возрастаетдо 63 % (1 - 1/e) своего максимального значения. Спад напряжения тоже экспоненциален, с той же постоянной времени. Ток через резистор, iR, должен изменяться во времени по тому же закону, что и напряжение. Следовательно, на фазе роста ток начинает расти от нуля до своего максимального значения i. Емкостной ток, наоборот, начинается с величины i и спадает до нуля по экспоненте с той же постоянной времени. По завершении импульса, поскольку внешнего источника тока нет, единственным током на резисторе будет ток, генерируемый напряжением на конденсаторе. Следовательно, ток на резисторе равен по величине емкостному току и противоположен ему по направлению, как показано на рисунке.

Вышеописанную цепь, состоящую из параллельно соединенных резистора и конденсатора, можно использовать для описания сферической нервной клетки, аксон и дендриты которой настолько малы, что их вкладом в электрические свойства клеток можно пренебречь. В эквивалентной цепочке для аксона или мышечного волокна как емкость мембраны, так и ее сопротивление распределены по всей длине волокна, как показано на рис. 7.2D. Емкость мембраны на единицу длины ст (измеряемая в мкФ/см) зависит от удельной емкости на единицу площади Сm (в мкФ/см2) по формуле сm = 2Ст, где — радиус волокна.

Постоянная времени  мембраны сферической клетки или  волокна не зависит от размера  клетки или волокна. Причина этого  в том, что увеличение радиуса (а  следовательно, и площади поверхности  мембраны) влечет за собой не только увеличение емкости, но и соответствующее снижение сопротивления, так что произведение двух величин не меняется. Поскольку показано, что величина Ст приблизительно одинакова для всех нервных и мышечных волокон (1 мкФ/см2), то величина τ является удобным параметром, характеризующим удельное сопротивление мембраны для данной клетки. Постоянная времени — это третий параметр, который, наряду с входным сопротивлением и постоянной длины, характеризует поведение аксона. Диапазон значений постоянной времени в различных типах нервных и мышечных клеток составляет от 1 до 20 мс.

Информация о работе Мембрана клетки