Летучая мышь (Bats)

Автор работы: Пользователь скрыл имя, 22 Ноября 2011 в 11:21, реферат

Краткое описание

Реферат на английском языке про летучую мышь
Bats are mammals of the order Chiroptera (from the Greek cheir (χείρ) "hand" and pteron (πτερόν) "wing") whose forelimbs form webbed wings, making them the only mammals naturally capable of true and sustained flight. By contrast, other mammals said to fly, such as flying squirrels, gliding possums, and colugos, glide rather than fly, and can only glide for a short distance. Bats do not flap their entire forelimbs, as birds do, but instead flap their spread-out digits, which are very long and covered with a thin membrane or patagium.

Содержимое работы - 1 файл

Bats.doc

— 30.50 Кб (Скачать файл)

Bats are mammals of the order Chiroptera (from the Greek cheir (χείρ) "hand" and pteron (πτερόν) "wing") whose forelimbs form webbed wings, making them the only mammals naturally capable of true and sustained flight. By contrast, other mammals said to fly, such as flying squirrels, gliding possums, and colugos, glide rather than fly, and can only glide for a short distance. Bats do not flap their entire forelimbs, as birds do, but instead flap their spread-out digits, which are very long and covered with a thin membrane or patagium.

Bats represent about twenty percent of all classified mammal species worldwide, with about 1,240 bat species divided into two suborders: the less specialized and largely fruit-eating megachiroptera, or flying foxes, and the more highly specialized and echolocating microchiroptera. About seventy percent of bats are insectivores. Most of the rest are frugivores, or fruit eaters. A few species such as the Fish-eating Bat feed from animals other than insects, with the vampire bats being the only parasitic mammalian species. Bats are present throughout most of the world, performing vital ecological roles of pollinating flowers and dispersing fruit seeds. Many tropical plant species depend entirely on bats for the distribution of their seeds. Bats are important in eating insect pests, reducing the need for pesticides.

Bats are mammals. They are often mistakenly called "flying rodents" or "flying rats". In many languages, the word for "bat" is cognate with the word for "mouse": for example, 'chauve-souris' ("bald-mouse") in French, 'murciélago' ("blind mouse") in Spanish, 'летучая мышь' ("flying mouse") in Russian, 'nahkhiir' ("leather mouse") in Estonian. An older English name for bats is flittermice (singular flittermouse), which matches their name in other Germanic languages (for example German Fledermaus and Swedish fladdermus). They can also be mistaken for birds. However, they are not related to rodents or birds, and do not have any closely related orders.

There are two traditionally recognized suborders of bats:

Megabats

Microbats

Not all megabats are larger than microbats. The major distinctions between the two suborders are the following:

Microbats use echolocation: megabats do not with the exception of Rousettus and relatives.

Microbats lack the claw at the second toe of the forelimb.

The ears of microbats do not close to form a ring: the edges are separated from each other at the base of the ear.

Microbats lack underfur: they are either naked or have guard hairs.

Megabats eat fruit, nectar or pollen while most microbats eat insects; others may feed on the blood of animals, small mammals, fish, frogs, fruit, pollen or nectar. Megabats have a well-developed visual cortex and show good visual acuity, while microbats rely on echolocation for navigation and finding prey.

The phylogenetic relationships of the different groups of bats have been the subject of much debate. The traditional subdivision between Megachiroptera and Microchiroptera reflects the view that these groups of bats have evolved independently of each other for a long time, from a common ancestor that was already capable of flight. This hypothesis recognized differences between microbats and megabats and acknowledged that flight has only evolved once in mammals. Most molecular biological evidence supports the view that bats form a single or monophyletic group.

Although the eyes of most microbat species are small and poorly developed, leading to poor visual acuity, none of them are blind. Vision is used to navigate microbats especially for long distances when beyond the range of echolocation. It has even been discovered that some species are able to detect ultraviolet light. They also have a high quality sense of smell and hearing. Bats hunt at night to avoid competition with birds, and travel large distances at most 800 km, in their search for food.

The finger bones of bats are much more flexible than those of other mammals, owing to their flattened cross-section and to low levels of minerals such as calcium near their tips. The skin on their wing membranes has more elasticity and so can stretch much more than other mammals.

The wings of bats are much thinner than those of birds, allowing bats to maneuver more quickly and more accurately than birds. It is also delicate, ripping easily; however, the tissue of the bat's membrane is able to regrow, such that small tears can heal quickly. The surface of their wings is equipped with touch-sensitive receptors on small bumps called Merkel cells, also found on human fingertips. These sensitive areas are different in bats, as each bump has a tiny hair in the center, making it even more sensitive and allowing the bat to detect and collect information about the air flowing over its wings, and to fly more efficiently by changing the shape of its wing in response. An additional kind of receptor cell is found in the wing membrane of species that use their wings to catch prey. This receptor cell is sensitive to the stretching of the membrane. The cells are concentrated in areas of the membrane where insects hit the wings when the bats capture them.

The teeth of microbats resemble insectivorans. They are very sharp to bite through the hardened armor of insects or the skin of fruit.

Most microbats are nocturnal and are active at twilight. A large portion of bats migrate hundreds of kilometres to winter hibernation dens, some pass into torpor in cold weather, rousing and feeding when warm weather allows for insects to be active. Others retreat to caves for winter and hibernate for six months. Bats rarely fly in rain as the rain interferes with their echo location, and they are unable to locate their food.

The social structure of bats varies, with some bats leading a solitary life and others living in caves colonized by more than a million bats. The fission-fusion social structure is seen among several species of bats. The term "fusion" refers to a large numbers of bats that congregate together in one roosting area and "fission" refers to breaking up and the mixing of subgroups, with individual bats switching roosts with others and often ending up in different trees and with different roostmates.

Studies also show that bats make all kinds of sounds to communicate with others. Scientists in the field have listened to bats and have been able to identify some sounds with some behaviour bats will make after the sounds are made.

Most bats are nocturnal creatures. Their daylight hours are spent grooming, sleeping, and resting; it is during the nighttime hours that they hunt. The means by which bats navigate while finding and catching their prey in the dark was unknown until the 1790s, when Lazzaro Spallanzani conducted a series of experiments on a group of blind bats. These bats were placed in a room submerged in total darkness, with silk threads strung across the room. Even then, the bats were able to navigate their way through the room. Spallanzani concluded that the bats were not using their eyes to fly through complete darkness, but something else. 

Spallanzani decided that bats were able to catch and find their prey through the use of their ears. To prove this theory, Spallanzani plugged the ears of the bats in his experiment. To his pleasure, he found that the bats with plugged ears were not able to fly with the same amount of skill and precision that they were able to without their ears plugged. 

Bats seem to use their ears to locate and catch their prey, but how they accomplish this was not discovered until the 1930s, by one Donald R. Griffin. Griffin, who was a biology student at Harvard College at the time, discovered that bats use echolocation to locate and catch their prey. When bats fly, they produce a constant stream of high-pitched sounds that only bats are able to hear. When the sound waves produced by these sounds hit an insect or other animal, the echoes bounce back to the bat, and guide them to the source.

Информация о работе Летучая мышь (Bats)