Автор работы: Пользователь скрыл имя, 21 Января 2013 в 18:42, контрольная работа
В отличие от лупы, микроскоп имеет, как минимум, две ступени увеличения. Функциональные и конструктивно-технологические части микроскопа предназначены для обеспечения работы микроскопа и получения устойчивого, максимально точного, увеличенного изображения объекта. Здесь мы рассмотрим устройство микроскопа и постараемся описать основные части микроскопа.
1. Устройство микроскопа…………………………………………………
2. Определение подвижности микроорганизмов………………………...
3. Инфекция и инфекционная болезнь, виды инфекций…........................
Список использованной литературы
Содержание:
Устройство микроскопа
Рис. 1. Устройство световых микроскопов:
А - МИКМЕД-1; Б - БИОЛАМ.
1 - окуляр, 2 - тубус,
3 - тубусодержатель, 4 - винт грубой
наводки, 5 - микрометренный винт, 6 -
подставка, 7 - зеркало, 8 - конденсор,
ирисовая диафрагма и
Основные части микроскопа. Устройство оптических микроскопов.
В отличие от
лупы, микроскоп имеет, как минимум,
две ступени увеличения. Функциональные
и конструктивно-технологически
Устройство микроскопа делится на 3 функциональные части:
1. Осветительная часть
Предназначена
для создания светового потока,
который позволяет осветить
Осветительная часть конструкции микроскопа включает источник света (лампа и электрический блок питания) и оптико-механическую систему (коллектор, конденсор, полевая и апертурная регулируемые/ирисовые диафрагмы).
2. Воспроизводящая часть
Предназначена для воспроизведения объекта в плоскости изображения с требуемым для исследования качеством изображения и увеличения (т. е. для построения такого изображения, которое как можно точнее и во всех деталях воспроизводило бы объект с соответствующим оптике микроскопа разрешением, увеличением, контрастом и цветопередачей).
Воспроизводящая
часть обеспечивает первую
Воспроизводящая
часть включает объектив и
промежуточную оптическую
Современные микроскопы последнего поколения базируются на оптических системах объективов, скорректированных на бесконечность. Это требует дополнительно применения так называемых тубусных систем, которые параллельные пучки света, выходящие из объектива, «собирают» в плоскости изображения микроскопа.
3. Визуализирующая часть
Предназначена
для получения реального
Визуализирующая часть расположена между плоскостью изображения объектива и глазами наблюдателя (цифровой камерой).
Визуализирующая
часть включает монокулярную, бинокулярную
или тринокулярную визуальную
насадку с наблюдательной
Кроме того,
к этой части относятся
Современный микроскоп
состоит из следующих конструктивно-
механической;
электрической.
Механическая часть микроскопа
Устройство микроскопа включается себя штатив, который является основным конструктивно-механическим блоком микроскопа. Штатив включает в себя следующие основные блоки: основание и тубусодержатель.
Основание представляет собой блок, на котором крепится весь микроскоп и является одной из основных частей микроскопа. В простых микроскопах на основание устанавливают осветительные зеркала или накладные осветители. В более сложных моделях осветительная система встроена в основание без или с блоком питания.
Разновидности оснований микроскопа:
- основание с осветительным зеркалом;
- так называемое «критическое» или упрощенное освещение;
- освещение по Келеру.
Тубусодержатель представляет собой блок, часть конструкции микроскопа, на котором закрепляются:
узел смены объективов, имеющий следующие варианты исполнения — револьверное устройство, резьбовое устройство для ввинчивания объектива, «салазки» для безрезьбового крепления объективов с помощью специальных направляющих;
фокусировочный механизм грубой и точной настройки микроскопа на резкость — механизм фокусировочного перемещения объективов или столиков;
узел крепления сменных предметных столиков;
узел крепления
фокусировочного и
узел крепления сменных насадок (визуальных, фотографических, телевизионных, различных передающих устройств).
В микроскопах
могут использоваться стойки для
крепления узлов (например, фокусировочный
механизм в стереомикроскопах или
крепление осветителя в некоторых
моделях инвертированных
Чисто механическим узлом микроскопа является предметный столик, предназначенный для крепления или фиксации в определенном положении объекта наблюдения. Столики бывают неподвижные, координатные и вращающиеся (центрируемые и нецентрируемые).
Оптика микроскопа (оптическая часть)
Оптические узлы и принадлежности обеспечивают основную функцию микроскопа — создание увеличенного изображения объекта с достаточной степенью достоверности по форме, соотношению размеров составляющих элементов и цвету. Кроме этого, оптика должна обеспечивать такое качество изображения, которое отвечает целям исследования и требованиям методик проводимого анализа.
Основными
оптическими элементами
Объективы микроскопа
— представляют
собой оптические системы, предназначенные
для построения микроскопического
изображения в плоскости
Количество линз обусловлено кругом решаемых объективом задач. Чем выше качество изображения, даваемое объективом, тем сложнее его оптическая схема. Общее число линз в сложном объективе может доходить до 14 (например, это может относиться к планапохроматическому объективу с увеличением 100х и числовой апертурой 1,40).
Объектив состоит из фронтальной и последующей частей. Фронтальная линза (или система линз) обращена к препарату и является основной при построении изображения соответствующего качества, определяет рабочее расстояние и числовую апертуру объектива. Последующая часть в сочетании с фронтальной обеспечивает требуемое увеличение, фокусное расстояние и качество изображения, а также определяет высоту объектива и длину тубуса микроскопа.
Классификация объективов
Классификация объективов значительно сложнее классификации микроскопов. Объективы разделяются по принципу расчетного качества изображения, параметрическим и конструктивно-технологическим признакам, а также по методам исследования и контрастирования.
По принципу расчетного качества изображения объективы могут быть:ахроматическими;
апохроматическими;
объективами плоского поля (план).
Ахроматические объективы.
Ахроматические объективы рассчитаны для применения в спектральном диапазоне 486–656 нм. Исправление любой аберрации (ахроматизация) выполнено для двух длин волн. В этих объективах устранены сферическая аберрация, хроматическая аберрация положения, кома, астигматизм и частично — сферохроматическая аберрация. Изображение объекта имеет несколько синевато-красноватый оттенок.
Апохроматические объективы.
Апохроматические объективы имеют расширенную спектральную область, и ахроматизация выполняется для трех длин волн. При этом, кроме хроматизма положения, сферической аберрации, комы и астигматизма, достаточно хорошо исправляются также вторичный спектр и сферохроматическая аберрация, благодаря введению в схему линз из кристаллов и специальных стекол. По сравнению с ахроматами, эти объективы обычно имеют повышенные числовые апертуры, дают четкое изображение и точно передают цвет объекта.
Полуапохроматы или микрофлюары.
Современные объективы, обладающие промежуточным качеством изображения.
Планобъективы.
В планобъективах исправлена кривизна изображения по полю, что обеспечивает резкое изображение объекта по всему полю наблюдения. Планобъективы обычно применяются при фотографировании, причем наиболее эффективно применение планапохроматов.
Потребность в подобного типа объективах возрастает, однако они достаточно дороги из-за оптической схемы, реализующей плоское поле изображения, и применяемых оптических сред. Поэтому рутинные и рабочие микроскопы комплектуются так называемыми экономичными объективами. К ним относятся объективы с улучшенным качеством изображения по полю: ахростигматы (LEICA), СР-ахроматы и ахропланы (CARL ZEISS), стигмахроматы (ЛОМО).
По параметрическим признакам объективы делятся следующим образом:
объективы с конечной длиной тубуса (например, 160 мм) и объективы, скорректированные на длину тубуса «бесконечность» (например, с дополнительной тубусной системой, имеющей фокусное расстояние 160 мм);
объективы малых (до 10х); средних (до 50х) и больших (более 50х) увеличений, а также объективы со сверхбольшим увеличением (свыше 100х);
объективы малых (до 0,25), средних (до 0,65) и больших (более 0,65) числовых апертур, а также объективы с увеличенными (по сравнению с обычными) числовыми апертурами (например, объективы апохроматической коррекции, а также специальные объективы для люминесцентных микроскопов);
объективы с увеличенными (по сравнению с обычными) рабочими расстояниями, а также с большими и сверхбольшими рабочими расстояниями (объективы для работы в инвертированных микроскопах). Рабочее расстояние — это свободное расстояние между объектом (плоскостью покровного стекла) и нижним краем оправы (линзы, если она выступает) фронтального компонента объектива;
объективы, обеспечивающие наблюдение в пределах нормального линейного поля (до 18 мм); широкопольные объективы (до 22,5 мм); сверхширокопольные объективы (более 22,5 мм);
объективы стандартные (45 мм, 33 мм) и нестандартные по высоте.
Высота —
расстояние от опорной плоскости
объектива (плоскости соприкосновения
ввинченного объектива с
По конструктивно-
объективы, имеющие пружинящую оправу (начиная с числовой апертуры 0,50), и без нее;
объективы, имеющие ирисовую диафрагму внутри для изменения числовой апертуры (например, в объективах с увеличенной числовой апертурой, в объективах проходящего света для реализации метода темного поля, в поляризационных объективах отраженного света);
объективы с корректирующей (управляющей) оправой, которая обеспечивает движение оптических элементов внутри объектива (например, для корректировки качества изображения объектива при работе с различной толщиной покровного стекла или с различными иммерсионными жидкостями; а также для изменения увеличения при плавной — панкратической — смене увеличения) и без нее.
По обеспечению
методов исследования и контрастирования
объективы можно разделить