История развития генной инженерии

Автор работы: Пользователь скрыл имя, 27 Марта 2012 в 19:43, реферат

Краткое описание

Генная инженерия возникла в70-е гг. как новая отрасль молекулярной биологии, главная задача которой - активная и целенаправленная перестройка генов живых существ, их конструирование, то есть управление наследственностью. В 1972 году, в Стэнфордском университете (США) Пол Берг и его сотрудники получили первые гибридные молекулы ДНК. При этом генную инженерию можно определить как систему экспериментальных приемов, позволяющих лабораторным путем создать искусственные генетические детерминанты в виде так называемых рекомбинантных (гибридных) молекул ДНК.

Содержимое работы - 1 файл

генная инженерия.docx

— 48.54 Кб (Скачать файл)

                                                            История развития генной инженерии

    Генная инженерия возникла в70-е гг. как новая отрасль молекулярной биологии, главная задача которой - активная и целенаправленная перестройка генов живых существ, их конструирование, то есть управление наследственностью. В  1972 году, в Стэнфордском университете (США) Пол Берг и его сотрудники получили первые гибридные молекулы ДНК. При этом генную инженерию можно определить как систему экспериментальных приемов, позволяющих лабораторным путем создать искусственные генетические детерминанты в виде так называемых рекомбинантных (гибридных) молекул ДНК. Введение в клетку новой генетической информации в виде рекомбинантных молекул ДНК изменяет ее гено- и фенотип, благодаря чему экспериментатор получает микроорганизм, измененный соответственно поставленной цели.

   Генная инженерия - раздел молекулярной генетики, связанный с целеноправленным созданием in vitro новых комбинаций геннетического материала, способного размножаться в клетке-хозяине и синтезировать конечные продукты обмена.

Ключевое  значение при конструировании рекДНК in vitro имеют фрагменты -рестриктазы, рассекающие молекулу ДНК на фрагменты по строго определенным местам , и ДНК -лигазы ,сшивающие фрагменты ДНК в единое целое. Только после выделения таких фрагментов создание искусственных генетических структур стало технически выполнимой задачей. Рекомбинантная молекула ДНК имеет форму кольца, она содержит ген (гены), составляющий объект генетических манипуляций, и так называемый вектор-фрагмент ДНК, обеспечивающий размножение рек ДНК и синтез конечных продуктов деятельности генетической системы-белков. Последнее происходит уже в клетке -хозяине, куда вводится рек ДНК. Гены, подлежащие клонированию, могут быть получены в составе фрагментов путем механического или рестриктазного дробления тотальной ДНК. Но структурные гены, как правило, приходиться либо синтезировать химико-биологическим путем, либо получать в виде ДНК- копии информационных РНК, соответсвующих избранному гену. Структурные гены содержат только кодированную запись конечного продукта (белка, РНК), полностью лишены регуляторных участков и потому неспособны, функционировать ни в клетке- хозяине, ни in vitro. Функциональные свойства рекДНК придает вектор, в котором присутствуют участки начало репликации (обеспечивает размножение рекДНК), генетические маркеры, необходимые для селекции, регуляторные участки, обязательные для траксрипции и трансляции генов. Большая часть векторов получена из плазмид кишечной палочки и других бактерий. Используя также векторы на основе фага лямбда, вирусов SV40 и полиомы, дрожжей, Agrobacterium tumefaciens идругие.

    При получении рекДНК образуется чаще всего несколько структур, из которых только одна является нужной. Поэтому обязательный этап составляет селекция и молекулярное клонирование рекДНК, введенной путем трансформации в клетку-хозяина. Наиболее часто в качестве клетки-хозяина используют кишечную палочку, однако применяют и другие бактерии, а так же дрожжи (Saccharomyces cerevisiae),животные и растительные клетки. Система вектор-хозяин  не может быть произвольной: вектор подгоняется к клетке-хозяину,его выбор зависит от видовой специфичности и целей исследователя. Существует три пути селекции рекДНК : генетический (по маркерам, с помощью избирательных сред), иммунохимическй и гибридизационный с мечеными ДНК и РНК. РекДНК характеризуют физическим картированием (расщепление рекстриктазами и электрофорез фрагментов в геле) и анализом первичной структуры. В результате интенсивного развития методов генной инженерии получены клоны многих генов рибосомальной, транспортной и 5S PHK, гистонов, глобина мыши, кролика, человека, коллагена, овальбумина, инсулина человека, а совсем недавнее открытие- расшифровка генома человека, сделанное в январе двухтысячного года, позволит в скором будущем клонировать человека .На основе генной инженерии возникла отрасль фармацевтической промышленности, называемая “индустрией ДНК” и представляющая собой одну из современных ветвей биотехнологии. Допущен для лечебного применения инсулин человека (хумулин) ,полученный по средством рекомбинантных ДНК. Генная инженерия за короткий срок оказала огромное влияние на развитие различных молекулярно-генетических методов и позволила существенно продвинуться на пути познания строения и функционирования генетического аппарата. В основе же генной инженерии заложены знания о свойствах организмов,которые передаются по наследству -это так называемая генетическая информация.

 

Характеристика  генной инженерии

     На сегодняшний день существует несколько сотен генетически изменённых продуктов. Уже на протяжении нескольких лет их употребляют миллионы людей в большинстве стран мира. Есть данные, что подобными технологиями пользуются для получения продуктов, реализуемых через сеть McDonalds. Многие крупные концерны, типа Unilever, Nestle, Danon и другие используют для производства своих товаров генно-инженерные продукты и экспортируют их во многие страны мира. Но во многих странах такие продукты обязательно должны содержать на упаковке надпись "Сделано из генетически модифицированного продукта".

Некоторые считают, что, внося изменения в генный код растения или животного, учёные делают то же самое, что и сама природа. Абсолютно все живые организмы  от бактерии до человека - это результат  мутаций и естественного отбора.

   Самые распространенные ГМ-растения в мире - соя, кукуруза, масличный рапс и хлопок. В некоторых странах для выращивания одобрены трансгенные помидоры, рис, кабачки. Эксперименты проводятся на подсолнечнике, сахарной свекле, табаке, винограде, деревьях и т. д. В тех странах, где пока нет разрешения на выращивание трансгенов, проводятся полевые испытания.

Основная  масса трансгенов культивируется в США, в Канаде, Аргентине, Китае, меньше - в других странах. Европа же очень озабочена. Под натиском общественности и организаций потребителей, которые хотят знать, что они едят, в некоторых странах введен мораторий на ввоз таких продуктов (Австрия, Франция, Греция, Великобритания, Люксембург). В других принято жесткое требование маркировать генетически измененное продовольствие.

В ЕС разрешены  только три вида генетически измененных растений, а если точнее - три сорта  кукурузы. Соя - пока единственная трансгенная культура, разрешенная к применению в России. На подходе - трансгенный картофель, кукуруза и сахарная свекла.

Если в 1996 году в мире под трансгенными культурами было занято 1,8 миллионов гектаров, то в 1999 году уже почти 40 миллионов. А в 2001 году, по прогнозам, будет не менее 60 миллионов. Это не считая Китая, который не дает официальной информации, но, по оценкам, около миллиона китайских фермеров выращивают трансгенный хлопок примерно на 35 млн. гектаров.

Первым  искусственно изменённым продуктом  стал помидор. Его новым свойством  стала способность месяцами лежать в недоспелом виде при температуре 12 градусов. Но как только такой помидор  помещают в тепло, он за несколько  часов становится спелым.

Преимущества  генной инженерии

1. По заверениям  ученых демографов, в ближайшие  двадцать лет население земного  шара удвоится. Пользуясь современными агрокультурами и агротехнологиями, прокормить такое количество людей будет просто невозможно. Следовательно, уже сейчас пора подумать о том, как с наименьшими потерями поднять урожайность сельхозугодий вдвое. Поскольку для обычной селекции срок в два десятилетия крайне мал, то остается механическая модификация генетического кода растений. Можно, например, добавить ген устойчивости к насекомым-вредителям или сделать растение более плодовитым. Это основной довод трансгенетиков.

2. С помощью  генной инженерии можно увеличить  в генетически измененной продукции  содержание полезных веществ  и витаминов по сравнению с  «чистыми» сортами. Например, можно  «вставить» витамин А в рис, с тем чтобы выращивать его в регионах, где люди испытывают его нехватку.

3. Можно существенно  расширить ареалы посева сельхозпродуктов, приспособив их к экстремальным  условиям, таким, как засуха и  холод.

4. Путем  генетической модификации растений  можно существенно уменьшить  интенсивность обработки полей  пестицидами и гербицидами. Ярким  примером здесь является уже  состоявшееся внедрение в геном  кукурузы гена земляной бактерии  Bacillus thuringiensis, уже снабжающего растение собственной защитой, так называемым Bt-токсином, и делающего по замыслу генетиков дополнительную обработку бессмысленной.

5. Генетически  измененным продуктам могут быть  приданы лечебные свойства. Ученым  уже удалось создать банан  с содержанием анальгина и  салат, вырабатывающий вакцину  против гепатита B.

6. Еда из  генетически измененных растений  может быть дешевле и вкуснее.

7. Модифицированные  виды помогут решить и некоторые  экологические проблемы. Конструируются  растения, эффективно поглощающие  цинк, кобальт, кадмий, никель и  прочие металлы из загрязненных  промышленными отходами почв.

8. Генная  инженерия позволит улучшить  качество жизни, очень вероятно  – существенно продлить её; есть  надежда найти гены, ответственные  за старение организма и реконструировать  их.

   Общественность сомневается в безопасности ГМ-пищи. Несмотря на заверения ученых, что этот страх и сомнения являются подсознательной реакцией на все новое, общественные массы, подогреваемые журналистами, смотрят с опаской на перспективу активного внедрения в жизнь генетически модифицированных продуктов питания.

 

Проблемы и  перспективы генной инженерии

     Возможность воздействовать на гены позволяет устранять причины наследственных болезней, изменять свойства организмов в нужном направлении, пересаживать гены из одного организма в другой и привносить в него новые признаки. Например, уже создаются новые организмы, сочетающие в себе свойства животных и растений. Однако довольно сложно определить долговременные последствия генных манипуляций.

Против генной инженерии

    В настоящее время генная инженерия технически несовершенна, так как она не в состоянии управлять процессом встраивания нового гена. Поэтому невозможно предвидеть место встраивания и эффекты добавленного гена. Даже в том случае, если местоположение гена окажется возможным установить после его встраивания в геном, имеющиеся сведения о ДНК очень неполны для того, чтобы предсказать результаты.

   Риски, связанные с применением  генной инженерии к продуктам  питания, можно разделить на  три категории: экологические,  медицинские и социально-экономические. 

 

Экологические риски

1. Появление  супервредителей.

В сущности, такие уже появились. На Bt-кукурузе и хлопке уже живет  коробочный (хлопковый) червь, которому наиболее ценный природный пестицид Bacillus thuringensis (Bt) не приносит вреда.

2. Нарушение  природного баланса.

Уже доказано, что многие ГМ-растения, такие, как ГМ-табак или технический рис, применяемый для производства пластика и лекарственных веществ, смертельно опасны для живущих на поле или рядом с ним грызунов. Пока эти растения произрастают лишь на опытных полях, а что произойдет после полного вымирания грызунов в районах их массовых засевов - не берется предсказать никто.

 

Медицинские риски

 

1. Повышенная  аллергеноопасность.

По поводу аллергической опасности ГМ-продуктов известный британский ученый, доктор Мэй Ван Хо, сказал: «Нет никаких известных способов предсказать аллергию на ГМ-пищу. Аллергическая реакция обычно возникает спустя некоторое время после появления и развития чувствительности к аллергену».

2. Возможная  токсичность и опасность для  здоровья.

Директор  Института сельскохозяйственной биологии Владимир Патыка вместе с коллегами из Всероссийского института сельскохозяйственной микробиологии (Санкт-Петербург) и чешскими микробиологами после двадцатилетних исследований пришел к выводу, что «при определенных условиях белок-токсин, если его ввести в ГМ-картофель, может выступить весьма сильным канцерогенным фактором».

3. Устойчивость  к действиям антибиотиков.

Для того чтобы  понять, «встроился» ли нужный ген в цепочку ДНК, специалисты-генетики снабжают его специальным «флажком». Чаще всего в роли этого «флажка» выступает ген устойчивости к антибиотикам. Если целевая клетка после «опыления» новым геном выдерживает действие этого антибиотика, значит, цель достигнута, и ген успешно внедрен. Проблема состоит в том, что, единожды внедрив этот ген в ДНК, вывести его уже нельзя. В результате возникает двойная опасность. Во-первых, употребление в пищу устойчивых к антибиотикам продуктов неизбежно нейтрализует действие антибиотиков, принимаемых в качестве лекарства. А во-вторых, появление большого количества антибиотикоустойчивых растений может повлечь за собой появление антибиотикоустойчивых бактерий. Нечто подобное уже наблюдалось несколько лет назад в Дании, когда тысячи людей оказались жертвами эпидемии сальмонеллеза, вызванной новым, устойчивым к антибиотикам, штаммом сальмонеллы.

Информация о работе История развития генной инженерии