Ферменты

Автор работы: Пользователь скрыл имя, 23 Ноября 2011 в 15:10, реферат

Краткое описание

Ферменты (от лат. fermentum – закваска), энзимы, специфические белковые катализаторы, присутствующие во всех живых клетках. Почти все биохимические реакции, протекающие в любом организме и в своём закономерном сочетании составляющие его обмен веществ, катализируются соответствующими Ф. Направляя и регулируя обмен веществ, Ф. играют важнейшую роль во всех процессах жизнедеятельности.

Содержимое работы - 1 файл

Ферменты.docx

— 28.07 Кб (Скачать файл)

Классификация и  номенклатура Ф., кроме шифра, включает также систематические и тривиальные (рабочие) названия. Так, например, систематическое  название карбоксилаза 2-оксокислот соответствует  уже упоминавшемуся тривиальному название пируватдекарбоксилаза, а систематическое название L-apгинин – амидиногидролаза – рабочему название аргиназа. 

Регуляция ферментативных процессов. Действие Ф. в организме  осуществляется путём регуляции  их синтеза и активности. Свойственный данному организму набор Ф. определяется его генетической природой. Однако он может изменяться под влиянием различных внутренних и внешних  факторов – мутаций, действия ионизирующей радиации, состава газовой среды, условий питания и т.д. Так, в  результате мутаций возникают т. н. "молекулярные болезни" (например, алкаптонурия). При этом наследственном заболевании у больных с мочой выделяется гомогентизиновая кислота, образующаяся в результате превращений аминокислоты тирозина. Гомогентизиновая кислота накапливается в организме и выделяется с мочой вследствие того, что у больных алкаптонурией утеряна способность к синтезу двух Ф., катализирующих её дальнейшее окисление, – параоксифенилпируватоксидазы и оксидазы гомогентизиновой кислоты. Влияние условий питания организма на его ферментный аппарат особенно наглядно прослеживается у микроорганизмов. Например, кишечная палочка при росте на питательной среде, содержащей глюкозу, синтезирует только следы b-галактозидазы. В присутствии же различных b-галактозидов образуются значительные количества этого Ф. – до 6–7% от всех содержащихся в клетке белков. Ф., новообразование или усиление синтеза которых происходит под влиянием какого-либо соединения, называются индуцируемыми ферментами. Под влиянием др. соединений может происходить подавление синтеза Ф., называемое репрессией. В животном организме индукция и репрессия синтеза Ф. осуществляется не только под влиянием соответствующих субстратов и метаболитов, но и под влиянием гормонов. Так, синтез глюкозо-6-фосфатазы, принимающей участие в синтезе глюкозы в печени, индуцируется гормонами тироксином и кортизоном, но репрессируется инсулином. Общая теория индукции и репрессии биосинтеза на генетическом уровне дана французскими учёными Ф. Жакобом и Ж. Моно (см. Оперон). В одном организме один и тот же Ф. может быть представлен различными молекулярными формами. Такие разнообразные формы Ф., катализирующие одну и ту же реакцию, но различающиеся по физическим, химическим и иммунологическим свойствам, называются изоферментами. Синтез изоферментов определяется генетическими факторами, но может изменяться под влиянием условий существования организма. Т. о., факторы, от которых зависят концентрация и активность Ф. в организме, так же разнообразны, как и условия его существования. Это прежде всего водный, газовый, температурный, кислотный и световой режим среды, а также концентрация субстратов и различных кофакторов, необходимых для действия Ф., наличие активаторов и ингибиторов, концентрации метаболитов и, наконец, у высших многоклеточных организмов это нервная и гормональная регуляция ферментативной активности. 

Примером влияния  условий существования организма  на активность Ф. может служить Пастера  эффект – прекращение брожения под  действием кислорода. Активность многих Ф. регулируется по аллостерическому принципу. У таких Ф. имеется т. н. аллостерический центр, присоединяясь к которому определённый метаболит – эффектор вызывает изменение структуры активного центра, вследствие чего активность Ф. снижается или повышается. 

Некоторые Ф. находятся  в клетке в виде многоферментных комплексов. В таких многоферментных ансамблях активность каждого отдельного Ф. строго координирована и регулируется др. Ф., входящими в состав данного комплекса. Примером многоферментного комплекса может служить пируватдегидрогеназа, состоящая из 16 молекул пируватдекарбоксилазы, 8 молекул дигидролипоилдегидрогеназы и 4 агрегатов липоатацетилтрансферазы, каждая из которых состоит из 16 субъединиц. Решающую роль в регуляции активности Ф. в клетке играют различные субклеточные структуры – митохондрии, микросомы, лизосомы и т.д., и белковолипидные мембраны, отделяющие их от цитоплазмы. Многие Ф. вмонтированы в этих мембранах в виде многоферментных ансамблей. 

Практическое значение ферментов. Ферментативные процессы являются основой многих производств: хлебопечения, виноделия, пивоварения, сыроделия, производства спирта, чая, уксуса. С начала 20 в. по предложению япон. учёного Д. Такамине в спиртовой и др. отраслях промышленности началось применение ферментных препаратов, получаемых из плесневых грибов или бактерий. В ряде стран этот способ широко используется для осахаривания с помощью амилаз крахмалистого сырья с целью получения кристаллической глюкозы или его сбраживания на спирт. Концентрированные амилолитические препараты Ф. из плесневых грибов при добавке в тесто приводят к улучшению качества хлеба и ускорению технологического процесса. Препараты протеолитических Ф., получаемых из микроорганизмов, употребляются в кожевенной промышленности для удаления волос и мягчения сырья, а в сыродельной промышленности – для замены дефицитного сычужного фермента (реннина). Препараты микробных пектолитических Ф. широко используют при производстве соков (выход плодового сока повышается на 10–20%). Всё большее применение очищенные ферментные препараты находят в медицине. В научных исследованиях и в клинической практике высокоочищенные ферментные препараты служат в качестве специфических средств биохимического анализа (см. Ферментативные методы анализа). Весьма перспективно применение т. н. иммобилизованных Ф., которые связываются каким-либо носителем, образующим с данным Ф. нерастворимый комплекс. При подборе соответствующего носителя можно получить иммобилизованный Ф. с высокой активностью, устойчивый по отношению к денатурирующим агентам. Колонка, заполненная иммобилизованным Ф., может быть многократно использована для проведения соответствующей реакции. Иммобилизованные Ф. находят всё более широкое применение в аналитической практике и биохимической технологии. 

Лит.: Ферменты, М., 1964; Диксон М., Уэбб Э., Ферменты, пер. с англ., М., 1966; Номенклатура ферментов, пер. с англ., М., 1966; Бернхард С., Структура и функция ферментов, пер. с англ., М., 1971; Структура и функция ферментов, в. 1–2, М., 1972–73; Фениксова Р. В., Биохимические основы получения и применения ферментных препаратов, в кн.: Техническая биохимия, М., 1973; Кретович В. Л., Введение в энзимологию, 2 изд., М,, 1974; Аллостерические ферменты, М., 1975; Ферменты медицинского назначения, Л., 1975; Ферментные препараты в пищевой промышленности, М., 1975; Advances in enzymology and related areas of molecular biology, v. 1–43, N. Y., 1941–75; Methods in enzymology, v. 1–36, N. Y., 1955–75.  

  В. Л. Кретович.

Информация о работе Ферменты