Автор работы: Пользователь скрыл имя, 19 Декабря 2010 в 16:20, реферат
Истоки современной биотехнологии уходят глубоко в прошлое. С не-запамятных времен получали пищевые продукты и улучшали их качество с использованием биологических процессов и агентов. В качестве биоло-гических агентов применялись различные организмы (от животных до микроорганизмов) На этом принципе основаны общеизвестные древнейшие способы получения молока, изготовления вин, уксуса, пивоварения, сыроде-лия, хлебопечения и т. д.
Введение 3
Биотехнологические производства с использованием ферментов микроорганизмов 5
1. Получение глюкозо-фруктозных сиропов 5
2. Получение L-аминокислот 7
3. Получение L-аспарагиновой кислоты 9
4. Получение L-яблочной кислоты 9
5. Получение безлактозного молока 10
6. Получение сахаров из молочной сыворотки 11
7. Получение 6-аминопенициллановой кислоты 12
ФЕРМЕНТАТИВНОЕ ПРЕВРАЩЕНИЕ ЦЕЛЛЮЛОЗЫ В САХАРА 13
Целлюлолитические микроорганизмы и ферменты 13
Выводы 15
Список литературы 16
Молочная сыворотка содержит в своем составе большое количество лактозы — около 5% в жидкой и 75% в высушенной сыворотке. Ферментативный гидролиз лактозы в сыворотке открывает новые возможности получения сахаристых веществ из нетрадиционного сырья, вносит определенный вклад в решение кормовой проблемы и в проблему охраны окружающей среды, поскольку сыворотка большей частью не утилизуется. Первый промышленный процесс гидролиза лактозы в молочной сыворотке с помощью иммобилизованной лактазы был реализован в 1980 г. совместно английской, французской и американской компаниями одновременно в Англии и Франции.
Перед введением в колонный реактор с иммобилизованным ферментом сыворотку пастеризуют, подвергают ультрафильтрации и пропускают через ионообменник, чем добиваются ее деминерализации. Мощность установки составляет около 1000 л при степени конверсии лактозы 80%. Установка полностью автоматизирована. Получаемые при этом сахара (глюкоза и галактоза) по сладости в полтора раза превышают сладость пищевого сахара в расчете на одинаковые экономические затраты.
По данным итальянской компании «Снам Проджетти», продолжительность работы иммобилизованного фермента в реакторе с молочной сывороткой существенно зависит от качества сыворотки и время полуинактивации фермента изменяется от 60 (при обработке депротеинизованной и деминерализованной сыворотки) до 8 сут (для необработанной кислой сыворотки), о связи с этим в промышленных условиях ежедневно по полчаса производят очистку колонны (с иммобилизованной лактазой) Разбавленной уксусной кислотой. Время работы подобной системы в лабораторных условиях составляет около двух лет
Проведение химического деацилирования бензилпенициллина, обычно являющегося исходным сырьем для получения 6-аминопенициллановой кислоты (6-АПК), представляет трудную задачу из-за наличия в его молекуле чрезвычайно лабильного β-лактамного кольца. Поэтому в промышленности до недавнего времени обрабатывали бензилпенициллин бактериальной массой Е. coli, содержащей фермент пенициллинамидазу, который специфически и без побочных реакций расщеплял именно ту амидную связь, которая необходима для образования 6-АПК.
В результате применения иммобилизованных бактериальных клеток, содержащих пенициллинамидазу, а затем и самой иммобилизованной пенициллинамидазы, удалось значительно повысить продуктивность и экономичность промышленного процесса получения 6-АПК. В 1975 г. процесс получения 6-АПК с использованием иммобилизованной пенициллинамидазы был внедрен в нашей стране. В настоящее время значительная доля 6-АПК в Италии и вся 6-АПК, выпускаемая в РФ, производится с помощью иммобилизованных ферментов.
Итальянская компания использует иммобилизованную пенициллинамидазу, полученную включением фермента в волокна триацетата целлюлозы. При этом эмульсию, образованную при смешивании раствора фермента с раствором триацетата целлюлозы в метиленхлориде, подвергают экструзии в нити. Волокна закрепляют вдоль термостатируемой колонны и пропускают через нее 6%-ный раствор бензилпенициллина до степени конверсии последнего 97% или выше. По данным итальянских ученых, общий выход 6-АПК составляет 85% с чистотой 96% и выше.
По технологии компании «Танабе Сейяку», использующей бактериальные клетки, иммобилизованные в полиакриламидный гель (с временем полуинактивации 42 сут при 30°С или 17 сут при 40°С), общий выход 6-АПК составляет около 80%. На советском производстве употребляют пенициллинамидазу, иммобилизованную в полиакриламидном геле, модифицированном глутаровым альдегидом.
Целлюлоза построена из звеньев D-глюкозы, которые соединены 1-4-β-глюкозидными связями (по типу «голова к хвосту») в длинные, вплоть до тысяч глюкозных единиц, цепи, уложенные в плотную упаковку со своеобразной кристаллической структурой. Прочность упаковки обусловлена главным образом тем, что цепи поперечно «прошиты» водородными связями, которые по отдельности относительно слабы, но в совокупности с тысячами других образуют, можно сказать, монолитный блок. В результате целлюлоза не только нерастворима в воде, но ее кристаллические участки непроницаемы практически для любых химических агентов, в том числе и для сильных кислот. Но там, где плотная упаковка глюкозных цепей нарушена (на поверхности целлюлозы, в местах поворота цепей, а также после специальной обработки целлюлозы, например с помощью интенсивного измельчения), образуются «аморфные области», куда могут проникать и растворители, и механические агенты. Это свойство используется при промышленном получении так называемой микрокристаллической целлюлозы, которая широко применяется для специальных химических целей. Природную целлюлозу обрабатывают кислотой, аморфные участки легко расщепляются и уходят в раствор, оставляя мелкие микрокристаллиты, чрезвычайно стойкие к химическим реагентам.
В природе имеются так называемые целлюлолитические микроорганизмы, содержащие набор ферментов — целлюлаз, способных к расщеплению не только аморфной, но и кристаллической целлюлозы до глюкозы. Попадая на поверхность целлюлозосодержащего материала и прикрепляясь к ней, микроорганизм выделяет целлюлазы, под действием которых субстрат целлюлаза в непосредственной близости от грибка-паразита расщепляется до конечного продукта — глюкозы. Микроорганизм поглощает глюкозу в качестве основного продукта питания, размножается, растет, захватывая все большие участки поверхности, выбрасывает все новые и новые порции ферментов, пока не истощится доступная целлюлоза.
Однако эти процессы протекают весьма медленно. Для того чтобы пень в лесу полностью сгнил, нужны годы. Если же отделить от микроорганизма ферменты целлюлазы, сконцентрировать их и добавить к целлюлозе, процесс значительно ускорится. При этом образующаяся глюкоза не потребляется грибками, а накапливается в реакционной смеси. Кроме того, если в качестве субстрата использовать не чистую целлюлозу, а целлюлозосодержащие отходы промышленности или сельского хозяйства, то можно решить и еще одну важную проблему — утилизацию отходов. Полученная глюкоза в зависимости от ее чистоты и экономической эффективности процесса может найти применение в медицине, пищевой промышленности, тонкой химической технологии или технической микробиологии. Глюкозу, как известно, можно сбраживать в этанол и затем употреблять как «жидкое топливо» в качестве заменителя части нефтепродуктов. Наконец, дегидратация энатола дает этилен — основу современной «большой химии».
Целлюлоза
на нашей планете — самое «
Благодаря высокой скорости роста, сравнительно простому строению клеток и несложной структуре генетического аппарата бактерии стали одним из наиболее удобных объектов в биохимических исследованиях низших организмов. Многие бактериальные культуры хорошо известны как активные продуценты внеклеточных гидролаз и применяются при промышленном получении ферментов. Практическое использование бактериальных ферментов в значительной степени способствовало интенсификации исследований по изучению условий их продуцирования, а также локализации.