Автор работы: Пользователь скрыл имя, 17 Ноября 2011 в 22:08, доклад
Любая живая клетка способна синтезировать белки, и эта способность представляет одно из наиболее важных и характерных ее свойств. С особенной энергией идет биосинтез белков в период роста и развития клеток. В это время активно синтезируются белки для построения клеточных органоидов, мембран. Синтезируются ферменты. Биосинтез белков идет интенсивно и во многих взрослых, т. е. закончивших рост и развитие, клетках, например в клетках пищеварительных желез, синтезирующих белки-ферменты (пепсин, трипсин), или в клетках желез внутренней секреции, синтезирующих белки-гормоны (инсулин, тироксин). Способность к синтезу белков присуща не только растущим или секреторным клеткам: любая клетка в течение всей жизни постоянно синтезирует белки, так как в ходе нормальной жизнедеятельности молекулы белков постепенно денатурируются, структура и функции их нарушаются. Такие пришедшие в негодность молекулы белков удаляются из клетки. Взамен синтезируются новые полноценные молекулы, в результате состав и деятельность клетки не нарушаются. Способность к синтезу белка передается по наследству от клетки к клетке и сохраняется ею в течение всей жизни.
Биосинтез
белка.
Любая живая клетка способна синтезировать белки, и эта способность представляет одно из наиболее важных и характерных ее свойств. С особенной энергией идет биосинтез белков в период роста и развития клеток. В это время активно синтезируются белки для построения клеточных органоидов, мембран. Синтезируются ферменты. Биосинтез белков идет интенсивно и во многих взрослых, т. е. закончивших рост и развитие, клетках, например в клетках пищеварительных желез, синтезирующих белки-ферменты (пепсин, трипсин), или в клетках желез внутренней секреции, синтезирующих белки-гормоны (инсулин, тироксин). Способность к синтезу белков присуща не только растущим или секреторным клеткам: любая клетка в течение всей жизни постоянно синтезирует белки, так как в ходе нормальной жизнедеятельности молекулы белков постепенно денатурируются, структура и функции их нарушаются. Такие пришедшие в негодность молекулы белков удаляются из клетки. Взамен синтезируются новые полноценные молекулы, в результате состав и деятельность клетки не нарушаются. Способность к синтезу белка передается по наследству от клетки к клетке и сохраняется ею в течение всей жизни.
Основная роль в определении структуры белков принадлежит ДНК. Сами ДНК непосредственного участия в синтезе не принимают. ДНК содержится в ядре клетки, а синтез белков происходит в рибосомах, находящихся в цитоплазме. В ДНК только содержится и хранится информация о структуре белков.
На длинной нити ДНК следует одна за другой запись информации о составе первичных структур разных белков. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном. Молекула ДНК представляет собрание нескольких сот генов.
Чтобы разобраться в том, каким образом структура ДНК определяет структуру белка, приведем такой пример. Многие знают об азбуке Морзе, при помощи которой передают сигналы и телеграммы. По азбуке Морзе все буквы алфавита обозначены сочетаниями коротких и длинных сигналов - точкам и тире. Буква А обозначается .--, Б -- --. и т. д. Собрание условных обозначений называют кодом или шифром. Азбука Морзе представляет собой пример кода. Получив телеграфную ленту с точками и тире, знающий код Морзе легко расшифрует написанное.
Макромолекула ДНК, состоящая из нескольких тысяч последовательно расположенных четырех видов нуклеотидов, представляет собой код, определяющий структуру ряда молекул белка. Так же как в коде Морзе каждой букве соответствует определенное сочетание точек и тире, так и в коде ДНК каждой аминокислоте соответствует определенное сочетание точек и тире, так и в коде ДНК каждой аминокислоте соответствует определенное сочетание последовательно связанных нуклеотидов.
Код
ДНК удалось расшифровать почти
полностью. Сущность кода ДНК состоит
в следующем. Каждой аминокислоте соответствует
участок цепи ДНК из трех рядом
состоящих нуклеотидов. Например, участок
Т-Т-Т соответствует
А-Ц-А-Т-Т-Т-А-А-Ц-Ц-А-А-
Разбив этот ряд на тройки (триплеты), мы сразу расшифруем, какие аминокислоты и в каком порядке следуют в молекуле белка: А-Ц-А - цистеин; Т-Т-Т - лизин; А-А-Ц - лейцин; Ц-А-А - валин; Г-Г-Г - пролин. В коде Морзе всего два знака. Для обозначения всех букв, всех цифр и знаков препинания приходится брать на некоторые буквы или цифры до 5 знаков. Код ДНК проще. Разных нуклеотидов 4. Число возможных комбинаций из 4 элементов по 3 равно 64. Разных аминокислот всего 20. Таким образом, различных триплетов нуклеотидов с избытком хватает для кодирования всех аминокислот.
Триплет – последовательное сочетание трех нуклеотидов, соответствующее какой-либо аминокислоте.
Кодон – все возможные сочетания триплетов, соответствующие одной аминокислоте.
Генетический код – свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов (триплетные сочетания нуклеотидов, кодирующие 20 аминокислот).
Антикодо́н — триплет, участок в транспортной рибонуклеиновой кислоте (тРНК), состоящий из трёх неспаренных (имеющих свободные связи) нуклеотидов.
Спариваясь с кодоном матричной РНК (мРНК), обеспечивает правильную расстановку каждой аминокислоты при биосинтезе белка.
Нуклеоти́ды — фосфорные эфиры нуклеозидов, нуклеозидфосфаты. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов.
Транскрипция - является первой стадией реализации (считывания) генетической информации, на которой нуклеотидная последовательность ДНК копируется в виде нуклеотидной последовательности РНК. В основе механизма копирования при транскрипции лежит тот же структурный принцип комплементарного спаривания оснований, что и при репликации.
Трансляция - процесс синтеза белка в цитоплазме клетки.
Транскрипция у эукариот происходит в клеточном ядре, а последующая трансляция - в цитоплазме на рибосомах.
Экспрессия гена, программируемый геномом процесс биосинтеза белков и(или) РНК. При синтезе белков экспрессия гена включает транскрипцию - синтез РНК с участием фермента РНК-полимеразы; трансляцию - синтез белка на матричной рибонуклеиновой кислоте, осуществляемый в рибосомах, и (часто) посттрансляционную модификацию белков.
Экспрессия
гена определяется регуляторными
Свойства генетического кода:
Транскрипция. Для синтеза белка в рибосомы должна быть доставлена программа синтеза, т. е. информация о структуре белка, записанная и хранящаяся в ДНК. Для синтеза белка в рибосомы направляются точные копии этой информации. Это осуществляется с помощью РНК, которые синтезируются на ДНК и точно копируют ее структуру. Последовательность нуклеотидов РНК точно повторяет последовательность в одной из цепей гена. Таким образом, информация, содержащаяся в структуре данного гена, как бы переписывается на РНК. Этот процесс называют транскрипцией (лат. "транскрипция" - переписывание). С каждого гена можно снять любое число копий РНК. Эти РНК, несущие в рибосомы информацию о составе белков, называют информационными (и-РНК), или матричными (м-РНК).
Для того чтобы понять, каким образом
состав и последовательность расположения
нуклеотидов в гене могут быть
"переписаны" на РНК, вспомним принцип
комплементарности, на основании которого
построена двухспиральная молекула ДНК.
Нуклеотиды одной цепи обусловливают
характер противолежащих нуклеотидов
другой цепи. Если на одной цепи находится
А, то на том же уровне другой цепи стоит
Т, а против Г всегда находится Ц. Других
комбинаций не бывает. Принцип комплементарности
действует и при синтезе информационной
РНК.
Против каждого нуклеотида одной из цепей ДНК встает комплементарный к нему нуклеотид информационной РНК (в РНК вместо тимидилового нуклеотида (Т) присутствует уридиловый нуклеотид (У). Таким образом, против Г (ДНК) встает Ц (РНК), против А (ДНК) - У (РНК), против Т (ДНК) - А (РНК). В результате образующаяся цепочка РНК по составу и последовательности своих нуклеотидов представляет собой точную копию состава и последовательности нуклеотидов одной из цепей ДНК. Молекулы информационной РНК направляются к месту, где происходит синтез белка, т. е. к рибосомам. Туда же идет из цитоплазмы поток материала, из которого строится белок, т. е. аминокислоты. В цитоплазме клеток всегда имеются аминокислоты, образующиеся в результате расщепления белков пищи.
Синтез молекул РНК начинается в определенных местах ДНК, называемых промоторами, и завершается в терминаторах. Участок ДНК, ограниченный промотором и терминатором, представляет собой единицу транскрипции ( Lewin B., 1980 ) - транскриптон. В пределах каждого транскриптона копируется только одна из двух нитей ДНК, которая называется значащей или матричной. Во всех транскриптонах, считываемых в одном направлении, значащей является одна нить ДНК; в транскриптонах, считываемых в противоположном направлении, значащей является другая нить ДНК. Соседние транскриптоны могут быть отделены друг от друга нетранскрибируемыми участками ДНК, а могут и перекрываться, в частности так, что в пределах участка перекрывания матричными оказываются обе нити. Разбиение ДНК на множество транскриптонов обеспечивает возможность независимого считывания разных генов, их индивидуального включения и выключения. У эукариот в состав транскриптона, как правило, входит только один ген.
Транскрипционные единицы прокариот, как правило, заключают в себе генетическую информацию нескольких генов и называются оперонами. Продуктами транскрипции оперонов являются полицистронные мРНК, в результате трансляции которых рибосомами образуется несколько белков. Организация генов в виде оперонов облегчает координированную регуляцию их экспрессии на уровне транскрипции. Согласованная регуляция транскрипции (и других этапов экспрессии) многих генов, не образующих одного оперона, чаще всего осуществляется специфическими белками-регуляторами, которые взаимодействуют с гомологичными регуляторными нуклеотидными последовательностями, маркирующими гены данной группы.
Процесс транскрипции разделяют на 4 основные стадии: 1) связывание молекул РНК-полимеразы с ДНК и распознавание промотора; 2) инициация; 3) элонгация; 4) терминация.
После
связывания с ДНК молекулы РНК-полимеразы
осуществляют поиск промоторов, на
которых происходит формирование инициационных
комплексов. Начальная стадия
инициации транскрипции завершается
образованием нескольких первых фосфодиэфирных
связей в молекуле синтезируемой РНК.
Стадия элонгации - последовательного
удлинения синтезируемых молекул РНК,
которая заканчивается по достижении
молекулами РНК-полимераз специальных
регуляторных последовательностей ДНК,
называемых терминаторами
транскрипции, после чего происходит
освобождение синтезированных молекул
РНК и РНК-полимераз из транскрипционных
комплексов. Освободившиеся молекулы
РНК-полимераз приобретают способность
вступать в новый цикл транскрипции.
Стадия терминации происходит при
достижении рибосомой стоп-кодона, после
чего белковые факторы терминации гидролизуют
последнюю тРНК от белка, прекращая его
синтез.
Транскрипция
Транспортные РНК. Аминокислоты попадают в рибосому не самостоятельно, а в сопровождении транспортных РНК (т-РНК). Молекулы т-РНК невелики - они состоят всего из 70-80 нуклеотидных звеньев. Их состав и последовательность для некоторых т-РНК уже установлены полностью. При этом выяснилось, что в ряде мест цепочки т-РНК обнаруживаются 4-7 нуклеотидных звеньев, комплементарных друг другу. Наличие комплементарных последовательностей в молекуле приводит к тому, что эти участки при достаточном сближении слипаются друг с другом благодаря образованию водородных связей между комплементарными нуклеотидами. В результате возникает сложная петлистая структура, напоминающая по форме листок клевера. К одному из концов молекулы т-РНК присоединяется аминокислота (Д), а в верхушке "листка клевера" находится триплет нуклеотидов (Е), который соответствует по коду данной аминокислоте. Так как существует не менее 20 различных аминокислот, то, очевидно, имеется не менее 20 различных т-РНК: на каждую аминокислоту - своя т-РНК.