Автор работы: Пользователь скрыл имя, 15 Мая 2012 в 22:59, реферат
Ракетным двигателем (РД) называют реактивный двигатель, не использующий для своей работы из окружающей среды ни энергию, ни рабочее тело. Таким образом, РД — установка, имеющая источник энергии и запас рабочего тела и предназначенная для получения тяги путем преобразования любого вида энергии в кинетическую энергию рабочего тела, отбрасываемого от двигателя в окружающую среду.
Аннотация
3
Задание на выпускную работу
4
Расчет параметров камеры и профилированного сопла.
Определение действительных параметров двигателя.
5
Объединено с п.4
6
Расчет охлаждения камеры двигателя.
(+ таблица в Ехселе ОХЛАЖДЕНИЕ НДМГ)
7
Расчет смесеобразования.
8
Проверочный расчет несущей способности камеры сгорания.
(+ таблица в Ехселе Прочность окружн БрХ)
9
Спец часть работы
2. Находим приращение радиуса под действием нагрузки:
0,254 |
0,3175 |
0,635 |
0,9525 |
1,27 |
1,5875 |
1,905 |
2,2225 |
2,54 |
3,175 |
1= 2*10-3* 127 = мм
2= 2,5*10-3* 127= мм
3= 5*10-3* 127= мм
4= 7,5*10-3* 127= мм
5= 10*10-3* 127= мм
6= 12,5*10-3* 127= мм
7= 15*10-3* 127= мм
8= 17,5*10-3* 127= мм
9= 20*10-3* 127= мм
10= 22,5*10-3* 127= мм
3. Определяем при заданных температурах:
При t1=500 0C 1/град
При t2=100 0C 1/град
Зная , находим Et - коэффициент температурного расширения:
Et1=0,0096500 Et2=0,0009600
4. Находим окружную деформация для каждой оболочки:
| E y1 | E y2 |
1 | -0,0077 | 0,0010 |
2 | -0,0072 | 0,0015 |
3 | -0,0047 | 0,0040 |
4 | -0,0022 | 0,0065 |
5 | 0,0004 | 0,0090 |
6 | 0,0029 | 0,0115 |
7 | 0,0054 | 0,0140 |
8 | 0,0079 | 0,0165 |
9 | 0,0104 | 0,0190 |
10 | 0,0154 | 0,0240 |
5. Принимаем окружные напряжения для каждой оболочки, согласно их температурам и деформации En по диаграмме деформирования стали ЭП53 и сплава БрХ08: (значения в Мпа)
№ | En | ||
1 | 0,002 | -204,05 | 176,58 |
2 | 0,0025 | -202,09 | 230,54 |
3 | 0,005 | -188,35 | 318,83 |
4 | 0,0075 | -166,77 | 348,26 |
5 | 0,01 | 9,81 | 367,88 |
6 | 0,0125 | 161,87 | 380,63 |
7 | 0,015 | 193,26 | 389,46 |
8 | 0,0175 | 206,01 | 402,21 |
9 | 0,02 | 212,88 | 410,55 |
10 | 0,0225 | 215,82 | 426,74 |
6. Находим давление в камере сгорания Рг.
№ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Pr, МПа | 0,958 | 2,263 | 4,565 | 5,600 | 8,844 | 11,540 | 12,243 | 12,745 | 13,050 | 13,479 |
7. Строим графики:
10. ПНЕВМОГИДРАВЛИЧЕСКАЯ СХЕМА ДВИГАТЕЛЯ.
Перед заправкой баков ракеты компонентами топлива электропневмоклапаны 5, 6, 8 и 14 находятся в обесточенном состоянии, клапаны горючего 17 и окислителя 7 открыты на предварительную ступень.
При подаче в управляющую полость клапана 7 воздуха давлением 50±2 атм с предыдущей ступени ракеты клапан окислителя закрывается. Производится заполнение шаробаллона 13 газообразным азотом давлением 200 ±5 атм от наземной установки через обратный клапан 12.
При заправке баков ракеты компонентами топлива жидкий кислород заполняет насос до клапана окислителя 7; горючее, заполнив магистрали двигателя, через клапан 29 перепускается в бак ракеты.
Перед запуском двигателя включается продувка форсуночной головки по линии горючего и пояса дополнительного охлаждения камере сгорания. Продувка осуществляется газообразным азотом, подаваемым с предыдущей ступени ракеты через обратные клапаны 3 и 34. В процессе продувки в камере сгорания лепестковой диафрагмой пирозажигательного устройства 2, установленного в критическом сечении, поддерживается определенное давление, обеспечивающее надежное воспламенение пиропатронов.
Запуск двигателя в полете производится автоматически от системы управления при работающем двигателе предыдущей ступени ракеты. По команде на запуск двигателя подается напряжение на пиропатроны пирозажигательного устройства. Одновременно подается напряжение на пироклапан запуска 14, и азот из шаробаллона через редуктор давления поступает в управляющую систему двигателя.
Через 0,8 сек после воспламенения пиропатронов подается напряжение на электропневмоклапаны 5 и 6; воздух стравливается из управляющей полости клапана окислителя 7, клапан открывается на предварительную ступень и удерживается в этом положении разрывным болтом; отсечной клапан горючего 32 открывается при поступлении азота в управляющую полости. Одновременно с командой на открытие топливных клапанов (мембраны принудительного прорыва 4 и 42) прекращает продувка камеры сгорания с предыдущей ступени ракеты. Компоненты топлива поступают в камеру сгорания и воспламеняются. Двигатель выходит на режим предварительной ступени.
Через 0,95 сек после команды на запуск двигателя воспламеняется пороховая шашка газогенератора. Пороховая шашка при своем сгорании обеспечивает раскрутку турбины 22, а также создает необходимый тепловой импульс для начала процесса термического разложения НДМГ в газогенераторе 25. В конце горения пороховой шашки подаете напряжение на электропневмоклапан 8, управляющий клапаном 29. При открытии клапана 29 горючее подходит к обратному клапану 24, одновременно прекращается перепуск горючего в бак ракеты.
При снижении давления пороховых газов горючее, открывая обратный клапан 24, поступает в газогенератор и разлагается, обороты турбонасосного агрегата увеличиваются. С увеличением давления компонентов топлива за насосами клапаны горючего 17 и окислителя 7 открываются на главную ступень (клапан окислителя резко открывается после разрушения разрывного болта). При повышении давления газов в камере сгорания происходит выброс пирозажигательного устройства.
При работе двигателя на режиме главной ступени жидкий кислород через обратный клапан 15 поступает в испаритель 23, где испаряется засчет тепла отработанных газов турбины и идет на наддув бака окислителя. Наддув бака горючего осуществляется продуктами разложения НДМГ, которые отбираются после газогенератора и балластируются жидким горючим в смесителе 20.
Для управления полетом ракеты отработанный газ после турбины и испарителя по трубопроводам подается в рулевые сопла 26, 37 и 40. Необходимый для управления полетом момент сил создается перераспределением расходов газа через неподвижно закрепленные рулевые сопла при помощи заслонок газораспределителей 27, 35 и 38.
При выключении двигателя срабатывает пироклапан окислителя 31, одновременно снимается напряжение с электропневмоклапанов 5, 6, 8, 14 и все пневмоклапаны, за исключением клапана окислителя 7, закрываются. Одновременно открывается перепуск горючего в бак ракеты. Двигатель выключается.
11. Описание конструкции двигателя по разрезу, представленному в графической части.
Камера сгорания (КС) выполнена в виде паяно- сварной неразъемной конструкции и состоит из форсуночной головки 1 и нижней части, включающие среднюю часть 2 и две секции сопла.
Форсуночная головка состоит из 37 центробежных двухкомпонентных форсунок и 24 центробежных однокомпонентных жидкостных форсунок горючего для охлаждения паяного шва и огневого днища. Расположение форсунок концентрическое с переменным шагом: а=28 мм для двухкомпонентных, и а=20 мм для однокомпонентных. Применение двухкомпонентных форсунок обеспечивает смешение компонентов в одной фазе вблизи плоскости форсунок в КС, что приводит к более интенсивному протеканию процессов горения и уменьшению объема КС.
Скрепление наружного днища с внутренним и средним выполнено с помощью форсунок штырей. Проточная часть форсунок штырей не отличается от основных форсунок.
Стык между форсуночной головкой и нижней частью образован сваркой по огневой стенке, а также по опорному и биметаллическому кольцам .
В связи с тем что при силовых нагрузках титановые сплавы могут самопроизвольно возгораться в среде жидкого кислорода, все детали полости окислителя форсуночной головки выполнены из стали или бронзы. Для стыковки стального корпуса головки с рубашкой средней части, выполненной из титанового сплава, предусмотрено биметаллическое кольцо. Кольцо состоит из внутренней стальной и наружной титановой частей, спаянных между собой твердым медно-серебряным припоем по специальной резьбе, имеющей круглый профиль, а также по круговым торцовым шипам. Так как паяное соединение биметаллического кольца недостаточно пластично то осевые и радиальные нагрузки, возникающие при работе камеры, воспринимаются резьбой и круговыми шипами, припой же-предназначен только для герметизации соединения.