Автор работы: Пользователь скрыл имя, 01 Апреля 2012 в 17:11, реферат
Путь человечества к познанию окружающего мира длился тысяче¬летия. Это был путь временного торжества ложных истин, путь кост¬ров и отречений. Но в то же время это была дорога величайших от¬крытий, предвидений и прозрений, дорога торжества человеческого гения. Вполне понятно стремление чело¬века во все времена создать систему окружающего мира.
Системы мира
Мир по Ньютону
Расширяющаяся вселенная
Отголоски начала
Большой взрыв
Микрофизика
Новые подходы
Неортодоксальные взгляды
Будущее Вселенной
Список литературы
Нужно сказать о том, что закон Хаббла и красное смещение разрешают и знаменитый парадокс Ольберса.
Закон Всемирного тяготения Ньютона легко выводится из ОТО. Но не это самое интересное. В 30-х годах было показано, что из закона Всемирного тяготения можно получить законы расширения и сжатия Вселенной, и ОТО для этого в принципе не нужна!
Это поистине поразительный факт, свидетельствующий лишний раз о том, насколько притягательна идея вечной и стационарной Вселенной. Нам трудно себе представить, что модели расширяющегося мира в принципе могли быть получены задолго до рождения Эйнштейна, к примеру, еще во времена Ньютона. И не построены были эти модели по чисто психологическим причинам.
Для самого Ньютона не существовал вопрос о начале мира, для него непреложным фактом было сотворение мира Творцом. Человечество не было еще готово к постановке подобного вопроса на научной основе. Прошло два столетия со дня смерти Ньютона, и уже великий Эйнштейн не хочет говорить с аббатом Леметром о вопросе начала: “Это слишком похоже на акт творения. Сразу видно, что Вы священник”. А ведь аббат Леметр, будущий президент папской Академии в Ватикане, был одним из тех, кто наряду с Фридманом исследовал решения ОТО. Термин “вселенные Леметра” прочно вошел в научную литературу. Именно он ввел понятие первичного атома, при взрыве которого и образовался наш мир.
Парадокс, а может быть, и нечто большее, чем парадокс, состоял в том, что и Эйнштейн, и многие другие ученые в течение нескольких лет после выхода в свет работ Фридмана (а затем и Леметра) не рассматривали всерьез космологические решения ОТО, зависящие от времени. Переворот в сознании и соответствующая переоценка произошли лишь после открытия Хаббла.
Закон Хаббла утверждает, что чем дальше от нас находится какая-нибудь галактика, тем с большей скоростью она от нас удаляется. При этом должна возрастать величина красного смещения. В конце концов оно станет настолько большим, что мы не сможем увидеть источник света. Как говорят в космологии, красное смещение создает “горизонт” видимости, за который наш взгляд не может проникнуть. К тому же расширение Вселенной происходит достаточно быстро. Ну а поскольку свет от объектов, лежащих за горизонтом, мы не можем воспринять, а внутри горизонта число звезд по астрономическим масштабам невелико — ≈ 1025, парадокс Ольберса, основанный на введении бесконечного числа источников света и бесконечной Вселенной, разрешается просто в рамках моделей расширяющейся Вселенной.
При анализе закона Хаббла возникает еще один вопрос. Если все наблюдаемые галактики разлетаются от нас, то не находимся ли мы, земные наблюдатели, в центре мира?
Казалось бы на первый взгляд, что наше положение “привилегированно”.
Вернемся снова к аналогии с поверхностью резинового надувного шара. Предположим, что это и есть наша Вселенная (мы не можем покинуть поверхность или проникнуть внутрь шара). Нанесем на поверхность шара точки и будем считать каждую точку галактикой. Начнем надувать шар от радиуса R до радиуса 2R (модель расширяющейся Вселенной!). Все точки (галактики) естественно останутся на поверхности шара, расстояние между ними также увеличится в два раза. Но вот что самое интересное! В какую бы “галактику” на нашей сфере мы ни поместили наблюдателя (А или В), ему будет казаться, что все остальные галактики от него удаляются, и именно он находится в центре мира.
Таким образом, наша Вселенная не имеет выделенного центра. Но давайте пойдем назад — начнем выпускать воздух из нашего шарика и предположим, что он сожмется в точку. Конечно, с реальным воздушным шариком этого не произойдет, но в качестве мысленного эксперимента подобная операция не вызывает трудностей. Тогда мы увидим, что при стремлении радиуса шара к 0 поверхность его также стремится к 0, и, естественно, расстояния между точками его поверхности (галактиками) беспредельно уменьшаются.
Именно здесь мы и подходим к одному из основных вопросов космологии: что было вначале? Вопрос вполне правомочный. Ведь если Вселенная расширяется, то когда-то этот процесс должен был начаться. И здесь физика — наука, претендующая на то, что она может объяснить любое явление в окружающем нас мире,— обязана была сказать свое слово.
Отголоски начала
Одним из первых физиков, подошедших вплотную к этому вопросу, был Г. Гамов. Произошло это, кстати говоря, несколько неожиданно, поскольку он занимался задачей космологической распространенности различных элементов и изотопов.
Известно, что в природе преобладают элементы с избытком нейтронов. Гамов хотел “получить” все элементы простым способом: последовательным присоединением свободных нейтронов к ядру. Но для этого нужны очень высокие температуры, и Гамов пришел к идее горячего начала.
Парадоксальным здесь является тот факт, что в целом теория Гамова о синтезе элементов неверна, а вывод о горячем начале Вселенной абсолютно верен. Более того, Гамов указал, что “отголоски” горячего начала должны быть видны сегодня в виде так называемого “реликтового излучения” (термин, предложенный известным советским астрофизиком И. Шкловским). Гамов даже оценил в 1956 году температуру этого излучения и получил цифру 5—6 К. Не правда ли, очень низкая температура? Но если взглянуть в прошлое, то температура этого излучения была выше, Вселенная была плотнее и горячее...
В 1964 году в лаборатории фирмы “Белл телефон” была создана новая рупорная антенна. Она предназначалась для работы со спутником связи “Эхо”. Но технические характеристики антенны, в частности очень низкий уровень шумов, сразу привлекли к ней внимание радиоастрономов. Первыми начали с ней работать А. Пензиас и Р. Вильсон, один из них был радиофизиком, другой радиоастрономом. Они решили мерить интенсивность радиоизлучения от нашей Галактики. Эта задача отнюдь не проста, так как, если вы измеряете радиосигналы от какого-то конкретного источника, например, от звезды, то избавиться от помех, шума довольно просто. Для этого надо лишь отклонить антенну от звезды, померить сигнал, а затем снова направить ее точно на звезду и опять провести измерения. Разница между двумя сигналами и будет сигналом от объекта. Но у Пензиаса и Вильсона объектом было фактически все небо!
Именно поэтому им необходимо было уменьшить до предела то, что в сегодняшней радиотехнике называется собственным шумом радиоприемного устройства. Кроме того, им, конечно, мешали так называемые атмосферные шумы. Короче говоря, прежде чем приступить к непосредственным экспериментам, они провели огромную подготовительную работу.
Эксперименты были начаты на коротких волнах (около 7,5 сантиметра), поскольку считалось, что в этом диапазоне шум должен быть пренебрежимо мал. Это была своего рода проверка качества антенны и приемных цепей. Но в первых же проведенных опытах исследователями был зарегистрирован радиошум в этом диапазоне. Причем интенсивность сигнала не зависела от направления. Это очень существенный факт, и самое естественное его объяснение состояло в том, что шумит сама антенна или цепи радиоприемного устройства. Проверялось абсолютно все. На подозрение была взята даже парочка голубей, которая облюбовала рупор антенны и за время подготовительных работ угнездилась в нем. В 1965 году эксперименты начались снова и снова дали тот же результат. Небо давало микроволновый фон, шум, и величина сигнала не зависела от направления. Откуда же этот шум мог появиться, если всевозможные помехи были учтены и устранены?
Пензиас и Вильсон не могли ответить на этот вопрос. Для начала они попытались определить характеристики обнаруженного ими шума и в первую очередь его интенсивность. А интенсивность теплового радиошума очень удобно описывать, пользуясь понятием обычной температуры. Действительно, любое тело “шумит” в радиодиапазоне за счет теплового движения электронов внутри тела. Грубо говоря, чем выше температура, тем выше интенсивность теплового шума. Поэтому в радиотехнике используется понятие “эквивалентной температуры” радиоизлучения. Итак, оказалось, что шум, открытый Пензиасом и Вильсоном, имел температуру около 3,5 К. (Здесь нельзя не сказать о том, что за год до открытия Пензиаса и Вильсона советские астрофизики А. Дорошкевич и И. Новиков теоретически предсказали возможность обнаружения реликтового излучения в сантиметровом диапазоне. Но, к сожалению, на эту работу не обратили тогда должного внимания экспериментаторы.)
Случай играет не последнюю роль в науке. Ведь Пензиас и Вильсон понятия не имели о том, что такое реликтовое излучение. Они просто натолкнулись на него. А практически в то же время всего в нескольких десятках километров от антенны фирмы “Белл” группа Р. Дикке, крупного американского астрофизика, строила специальную антенну для поиска отголосков Большого Взрыва.
Дикке знал о работах Гамова и придавал им большое значение. Именно поэтому, когда астрофизики узнали о результатах Пензиаса и Вильсона, Дикке мгновенно объяснил их, и соответствующие публикации в журнале “Nature” появились одновременно, но с экспериментальными результатами Дикке опоздал примерно на полгода. 20 лет размышлял Нобелевский комитет, кому присудить премию — счастливчикам Пензиасу и Вильсону или Р. Дикке. Как мы знаем, выиграли счастливчики.
Конечно же, это открытие могло быть сделано и раньше. Ведь о Большом Взрыве говорили и до 1965 года. Но, как указал лауреат Нобелевской премии по физике Е. Вигнер, теория Большого Взрыва не привела к поиску реликтового излучения потому, что физикам было трудно серьезно воспринять любую теорию ранней Вселенной: “Это открытие заставило всех нас всерьез отнестись к мысли, что ранняя Вселенная была”.
Большой взрыв
О Большом Взрыве ежегодно публикуется огромное число статей и в научной и в научно-популярной печати. Но самое-то интересное заключается в том, что взрыва в обычном понимании этого слова не было! Справедливо ли применять слово “взрыв” к начальным стадиям расширения Вселенной? Другими словами, можно ли сказать, что огромное давление сжатой в точку Вселенной явилось причиной ее расширения (взрыв бомбы)?
Нет! При взрыве расширение происходит из-за разности между большим давлением продуктов взрыва и малым давлением окружающего их атмосферного воздуха. Но когда мы рассматриваем раннюю Вселенную, понятия “снаружи” и “внутри” теряют смысл, а давление в однородной Вселенной распределено равномерно. Между различными частями Вселенной нет разности давления, а значит, нет и силы, вызывающей расширение.
В чем же дело? Почему Вселенная начала расширяться? На этот вопрос сегодня нет общепринятого ответа.
Очень трудно говорить о тех временах, когда вся видимая сегодня Вселенная была величиной с маковое зернышко. Но предполагается, что она действительно миллиарды лет тому назад была именно таких размеров (и даже меньше) и действительно стала расширяться.
Сегодня космология еще не в состоянии ответить на ряд принципиальных вопросов. Среди них основные: что было до начала наблюдаемого расширения? Будет ли Вселенная вечно расширяться или опять сожмется в точку (как говорят физики, образуется ли снова сингулярность — состояние вещества с бесконечной плотностью) ? Мы надеемся, что ответы на эти вопросы будут получены в близком будущем.
Но отсутствие ответов сейчас, сегодня, не мешает физикам рассматривать самые ранние стадии расширения Вселенной. Некоторые теории оперируют с временами 10-35 секунды от начала. Это, по выражению академика Я. Зельдовича, “очень-очень ранняя Вселенная”. Есть теории, которые “заглядывают” в еще более ранние моменты времени. Термин “Большой Взрыв” сейчас общепринят, и мы его будем использовать. Тем более что скорости процессов, происходящих при “рождении” нашего Мира, в неизмеримое число раз превышают скорости любых известных сегодня взрывных процессов. Поэтому-то расширение Вселенной действительно можно уподобить “сверхвзрыву”, Большому Взрыву.
Почему для нас так важны начальные этапы развития Вселенной, почему космологи пытаются проанализировать самые ранние моменты, заглянуть как можно глубже в прошлое нашего мира? Да потому, что никакая космологическая модель, никакая теория невозможна без достаточно полного понимания начальных этапов развития Вселенной — ведь именно тогда закладывалось ее будущее, все последующие стадии ее формирования. И эти стадии нельзя понять, не зная, какой была ранняя, горячая Вселенная. Чтобы представить себе развитие Вселенной, следует прежде всего постараться понять, что представляло собой вещество Вселенной, материя на разных этапах ее существования.
Важность постановки такой задачи очевидна. Ведь решения уравнений ОТО, полученные Фридманом, говорят о том, что Вселенная расширяется из точки, из сингулярности. Но решения эти, с другой стороны, ничего не говорят о состоянии и поведении вещества вблизи сингулярности, а для нас сейчас, когда мы начинаем рассматривать ранние стадии Вселенной, именно это и является самым главным.
До сих пор мы говорили лишь об ОТО, которая описывает процессы расширения и сжатия мира. Но совершенно ясно, что сейчас для рассказа о поведении вещества мы должны обратиться к другим физическим теориям.
Вопросы, рассматриваемые нами, исключительно сложны, а очень многие их аспекты еще ждут своего решения: Но именно эти задачи и являются на сегодня наиболее “горячими точками” современной физики и космологии. Какими же теоретическими “инструментами” пользуются современные ученые?
Самая красивая из физических теорий — ОТО представляет собой типичный пример классической теории. Что это значит? В уравнения ОТО не вводится никаких новых фундаментальных физических постоянных. В них присутствуют лишь скорость света и гравитационная постоянная Ньютона.
Другим примером классической теории является электродинамика, созданная более ста лет назад Д. Максвеллом. Всего 80 лет назад большинство физиков свято верило, что в природе существует лишь два вида фундаментальных взаимодействий — гравитация и электромагнетизм. Они имеют неограниченный радиус действия и могут быть не только измерены с помощью приборов, но хорошо известны “в быту”: если, например, кирпич упадет на голову, можно не сомневаться в том, что вы на практике столкнулись с гравитацией. Электромагнитные взаимодействия также хорошо знакомы каждому человеку, поскольку самые разнообразные физические, химические, биологические явления зависят от электромагнетизма.