Автор работы: Пользователь скрыл имя, 09 Апреля 2012 в 19:28, реферат
В наше время трудно представить себе, что без компьютеров можно обойтись. А ведь не так давно, до начала 70-х годов вычислительные машины были доступны весьма ограниченному кругу специалистов, а их применение, как правило, оставалось окутанным завесой секретности и мало известным широкой публике. Однако в 1971 году произошло событие, которое в корне изменило ситуацию и с фантастической скоростью превратило компьютер в повседневный рабочий инструмент десятков миллионов людей.
Вступление стр. 3
Ручной период докомпьютерной эпохи стр. 3
Механический этап стр. 5
Электромеханический этап стр.5
Этап современных ЭВМ (электронный) стр. 7
Роль вычислительной техники в жизни человека стр. 13
Заключение стр. 14
Список литературы стр. 15
Реферат
Архитектура ЭВМ
История развития вычислительной техники
2011-2012
Ручной период докомпьютерной эпохи
Механический этап
Электромеханический этап
Этап современных ЭВМ (электронный)
Заключение
Список литературы
Слово «компьютер» означает «вычислитель», т.е. устройство для вычислений. Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. Более 1500 лет тому назад для счета использовались счетные палочки, камешки и т.д.
В наше время трудно представить себе, что без компьютеров можно обойтись. А ведь не так давно, до начала 70-х годов вычислительные машины были доступны весьма ограниченному кругу специалистов, а их применение, как правило, оставалось окутанным завесой секретности и мало известным широкой публике. Однако в 1971 году произошло событие, которое в корне изменило ситуацию и с фантастической скоростью превратило компьютер в повседневный рабочий инструмент десятков миллионов людей. В том, вне всякого сомнения знаменательном году еще почти никому не известная фирма Intel из небольшого американского городка с красивым названием Санта-Клара (шт. Калифорния), выпустила первый микропроцессор. Именно ему мы обязаны появлением нового класса вычислительных систем – персональных компьютеров, которыми теперь пользуются, по существу, все, от учащихся начальных классов и бухгалтеров до ученых и инженеров.
В конце XX века невозможно представить себе жизнь без персонального компьютера. Компьютер прочно вошел в нашу жизнь, став главным помощником человека. На сегодняшний день в мире существует множество компьютеров различных фирм, различных групп сложности, назначения и поколений.
В данном реферате мы рассмотрим историю развития вычислительной техники, а также краткий обзор о возможностях применения современных вычислительных систем и дальнейшие тенденции развития персональных компьютеров.
На протяжении всего своего существования люди использовали разного рода и конструкции вычислительные аппараты. Некоторые из них и по сей день используются в повседневной жизни, а некоторые затерялись в переулках времени.
Знание истории развития вычислительной техники как основы компьютерной информатики – необходимый составной элемент компьютерной культуры.
Поэтому кратко рассмотрим историю ее становления с точки зрения сегодняшнего дня.
Основные этапы развития ВТ можно привязать к следующей хронологической шкале:
- ручной - до 17 века
- механический – с середины 17 века
- электромеханический – с 90 годов 19 века
- электронный – с 40 годов 20 века
Ручной период докомпьютерной эпохи
Ручной период начался на заре человеческой цивилизации. Фиксация результатов счета у разных народов на разных континентах производилась разными способами: пальцевый счет, нанесение засечек, счетные палочки, узелки и т.д. Наконец, появление приборов, использующих вычисление по разрядам, как бы предполагали наличие некоторой позиционной системы счисления, десятичной, пятеричной, троичной и т.д. К таким приборам относятся абак, русские, японские, китайские счеты.
Историю цифровых устройств начать следует со счетов. Подобный инструмент был известен у всех народов. Древнегреческий абак (доска или «саламинская доска» по имени острова Саламин в Эгейском море) представлял собой посыпанную морским песком дощечку. На песке проходили бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая - десяткам и т.д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камушек в следующем разряде. Римляне усовершенствовали абак, перейдя от деревянных досок, пеcка и камешков к мраморным доскам с выточенными желобками и мраморными шариками. Китайские счеты суан – пан состояли из деревянной рамки, разделенной на верхние и нижние секции. Палочки соотносятся с колонками, а бусинки – с числами. У китайцев в основе счета лежала не десятка, а пятерка.
Суан - пан разделены на две части: в нижней части на каждом ряду располагаются по 5 косточек, в верхней части – по 2. Таким образом, для того, чтобы выставить на этих счетах число 6, ставили сначала косточку, соответствующую пятерке, а затем добавляли одну косточку в разряд единиц.
У японцев это же устройство для счета носило название серобян.
На Руси долгое время считали по косточкам, раскладываемым в кучки. Примерно с 15 века получил распространение «дощатый счет», завезенный, видимо, западными купцами с ворванью и текстилем. «Дощатый счет» почти не отличался от обычных счетов и представлял собой рамку с укрепленными горизонтальными веревочками, на которые были нанизаны просверленные сливовые или вишневые косточки.
В 9 веке индийские ученые сделали одно из величайших открытий в математике. Они изобрели позиционную систему счисления, которой теперь пользуется весь мир.
При записи числа, в котором отсутствует какой- либо разряд (например, 110 или 16004), индийцы вместо названия цифры говорили слово «пусто». При записи на месте «пустого» разряда ставили точку, а позднее рисовали кружок. Такой кружок называется «сунья».
Арабские математики перевели это слово по смыслу на свой язык – они говорили «сифр». Современное слово «нуль» происходит от латинского.
В конце 15 – начале 16 века Леонардо да Винчи создал 13- разрядное суммирующее устройство с десятизубными кольцами. Основу машины по описанию составляли стержни, на которые крепились два зубчатых колеса, большее с одной стороны стержня, а меньшее – с другой. Эти стержни должны были располагаться таким образом, чтобы меньшее колесо на одном стержне входило в зацепление с большим колесом на другом стержне. При этом меньшее колесо второго стержня сцеплялось с большим колесом третьего и т.д. Десять оборотов первого колеса, по замыслу автора, должны были приводить к одному полному обороту второго, а десять оборотов второго - к полному обороту третьего и т.д. Вся система, состоящая из 13 стержней с зубчатыми колесами должна была, приводиться в движение набором грузов.
Развитие механики в 17 веке стало предпосылкой вычислительных устройств и приборов, использующих механический принцип вычислений, обеспечивающий перенос старшего разряда. Использование таких машин способствовало «автоматизации умственного труда».
Увеличение во второй половине 19 века вычислительных работ в целом ряде областей человеческой деятельности выдвинуло настоятельную потребность в ВТ и повышение требований к ней.
В этот период английский математик Чарльз Бэббидж выдвинул идею создания программно-упраляемой счетной машины, имеющей арифметическое устройство, устройство управления, ввода и печати.
Первая спроектированная Беббиджем машина, Разностная машина, работала на паровом двигателе. Работающая модель была шестицифровым калькулятором, способным производить вычисления и печатать цифровые таблицы.
Главным достижением этой эпохи можно считать изобретение арифмометра ученым, по имени Однер. Главная особенность детища Однера заключается в применении зубчатых колес с переменным числом зубцов вместо ступенчатых валиков. Оно проще валика конструктивно и имеет меньшие размеры.
Первоначально появление в этот период ЭВМ не очень повлияло на выпуск арифмометров, прежде всего из-за различия в назначении, а также в стоимости и распространенности. Однако, с 60 годов в массовое использование все активнее проникают электронные клавишные вычислительные машины, выпускаемые вначале на лампах, а с 1964 г. на транзисторах. Лидерство в этом направлении сразу же захватила Япония, которая отличалась миниатюризацией электронной техники, включая ВТ.
Электромеханический этап развития ВТ явился наименее продолжительным и охватывает около 60 лет – от первого табулятора Г. Холлерита до первой ЭВМ ENIAK (1945). Предпосылками создания проектов этого типа явились как необходимость проведения массовых расчетов, так и развитие прикладной электротехники. Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.
Значение работ Холлерита для развития ВТ определяется двумя факторами. Во-первых, он стал основоположником нового направления в ВТ – счетно-перфорационного с соответствующим им оборудованием для широкого круга экономических и научно-технических расчетов. Это направление привело к созданию машиносчетных станций, послуживших прообразом современных вычислительных центров. Во-вторых, даже в наше время использование большого числа разнообразных устройств ввода/вывода информации не отменило полностью использование перфокарточной технологии.
Заключительный период электромеханического этапа развития вычислительной техники характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электропроводом. Эти аппараты можно рассматривать в качестве прямых предшественников универсальных ЭВМ.
А теперь я бы хотела рассказать о современных ЭВМ, об их истории и развитии.
Историю развития современных ЭВМ разделяют на 4 поколения. Но деление компьютерной техники на поколения — весьма условная, нестрогая классификация по степени развития аппаратных и программных средств, а также способов общения с компьютером.
Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию, как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования. Этот прогресс показан в данной таблице:
П О К О Л Е Н И Я Э В М | ХАРАКТЕРИСТИКИ | |||
I | II | III | IV | |
Годы применения | 1946-1958 | 1958-1964 | 1964-1972 | 1972 - настоящее время |
Основной элемент | Эл.лампа | Транзистор | ИС | БИС |
Количество ЭВМ в мире (шт.) | Десятки | Тысячи | Десятки тысяч | Миллионы |
Быстродействие (операций в секунду) | 103-144 | 104-106 | 105-107 | 106-108 |
Носитель информации | Перфокарта, Перфолента | Магнитная Лента | Диск | Гибкий и лазерный диск |
Размеры ЭВМ | Большие | Значительно меньше | Мини-ЭВМ | микроЭВМ |