Функциональные особенности гладких мышц

Автор работы: Пользователь скрыл имя, 19 Февраля 2012 в 09:09, реферат

Краткое описание

Цель работы дать характеристику мышечной ткани, в том числе и мышцам в организме человека.
Задачи:
1. Дать определение мышцам.
2. Описать строение мышечной ткани и мышц
3. Выделить особенности работы мышц.

Содержание работы

Введение
1.Физиология мышц классификация мышечного волокна
1.1 Функции скелетных и гладких мышц
2.Виды сокращения
2.1 Режимы сокращения мышц
3. Строение мышц
4. Функциональные особенности гладких мышц
Заключение
Список использованной литературы

Содержимое работы - 1 файл

Содержание + почти готова.doc

— 630.50 Кб (Скачать файл)

Механизмы сокращения мышечного волокна. В  покоящихся мышечных волокнах при отсутствии импульсации мотонейрона поперечные миозиновые мостики не прикреплены  к актиновым миофиламентам.

При сокращении мышцы длина А-дисков не меняется, J - диски укорачиваются, а Н-зона А-дисков может исчезать (рис.1). Эти данные явились основой для создания теории, объясняющей сокращение мышцы механизмом скольжения (теорией скольжения) тонких актиновых миофиламентов вдоль толстых миозиновых. В результате этого миозиновые миофиламенты втягиваются между окружающими их актиновыми.

 Это  приводит к укорочению каждого  саркомера, а значит, и всего  мышечного волокна. Молекулярный  механизм сокращения мышечного  волокна состоит в том, что  возникающий в области концевой  пластинки потенциал действия распространяется по системе поперечных трубочек вглубь волокна, вызывает деполяризацию мембран цистерн саркоплазматического ретикулума и освобождение из них ионов кальция. Свободные ионы кальция в межфибриллярном пространстве запускают процесс сокращения. Совокупность процессов, обуславливающих распространение потенциала действия вглубь мышечного волокна, выход ионов кальция их саркоплазматического ретикулума, взаимодействие сократительных белков и укорочение мышечного волокна называют "электромеханическим сопряжением".

  Временная последовательность между возникновением потенциала действия мышечного волокна, поступлением ионов кальция к миофибриллам и развитием сокращения волокна показана на рисунке 2. 
 
 
 
 
 
 
 
 

Схема временной  последовательности развития возбуждения и сокращения мышцы 

 

При возбуждении  волокна Са+2 выходит из цистерн саркоплазматического ретикулума и, следовательно, концентрация его вблизи миофибрилл возрастает. Под влиянием активирующих ионов Са молекула тропонина изменяет свою форму таким образом, что выталкивает тропомиозин в желобок между двумя нитями актина, освобождая тем самым участки для прикрепления миозиновых поперечных мостиков к актину. В результате поперечные мостики прикрепляются к актиновым нитям. Поскольку головки миозина совершают "гребковые" движения в сторону центра саркомера происходит "втягивание" актиновых миофиламентов в промежутки между толстыми миозиновыми нитями и укорочение мышцы.

Источником  энергии для сокращения мышечных волокон служит АТФ.

При однократном  движении поперечных мостиков вдоль  актиновых нитей (гребковых движениях) саркомер укорачивается примерно на 1% его длины. Следовательно, для полного изотонического сокращения мышцы необходимо совершить около 50 таких гребковых движений. Только ритмическое прикрепление и отсоединение головок миозина может втянуть нити актина вдоль миозиновых и совершить требуемое укорочение целой мышцы. Напряжение, развиваемое мышечным волокном, зависит от числа одновременно замкнутых поперечных мостиков. Скорость развития напряжения или укорочения волокна определяется частотой замыкания поперечных мостиков, образуемых в единицу времени, то есть скоростью их прикрепления к актиновым миофиламентам. С увеличением скорости укорочения мышцы число одновременно прикрепленных поперечных мостиков в каждый момент времени уменьшается. Этим и можно объяснить уменьшение силы сокращения мышцы с увеличением скорости ее укорочения.

Поскольку возврат ионов кальция в цистерны саркоплазматического ретикулума идет против диффузионного градиента, то этот процесс требует затрат энергии. Ее источником служит АТФ. Одна молекула АТФ затрачивается на возврат 2-х ионов кальция из межфибриллярного пространства в цистерны. Таким образом, кальций в мышечных волокнах играет роль внутриклеточного посредника, связывающего процессы возбуждения и сокращения.

Регуляция силы сокращения мышц. Для регуляции  величины напряжения мышцы центральная  нервная система использует три  механизма.

1. Регуляция  числа активных ДЕ. Чем больше число ДЕ мышцы включается в работу, тем большее напряжение она развивает. При необходимости развития небольших усилий и соответственно малой импульсации со стороны центральных нервных структур, регулирующих произвольные движения, в работу включаются, прежде всего, медленные ДЕ, мотонейроны, которые имеют наименьший порог возбуждения. По мере усиления центральной импульсации к работе подключаются быстрые, устойчивые к утомлению ДЕ, мотонейроны которых имеют более высокий порог возбуждения. И наконец, при необходимости увеличения силы сокращения более 20-25% от максимальной произвольной силы (МП С), активируются быстрые, легко утомляемые мышечные волокна, иннервируемые крупными мотонейронами с самым высоким порогом возбуждения.

Таким образом, первый механизм увеличения силы сокращения состоит в том, что при необходимости повысить величину напряжения мышцы в работу вовлекается большее количество ДЕ. Последовательность включения разных по морфофункциональным признакам ДЕ определяется интенсивностью центральных возбуждающих влияний и порогом возбудимости спинальных двигательных нейронов.

2. Регуляция  частоты импульсации мотонейронов. При слабых сокращениях скелетных мышц импульсация мотонейронов составляет 5 - 10 имп/с.

Для каждой отдельной ДЕ чем выше (до определенного  предела) частота возбуждающих импульсов, тем больше сила сокращения ее мышечных волокон и тем больше ее вклад в развиваемое всей мышцей усилие. С увеличением частоты раздражения мотонейронов все большее количество ДЕ начинает работать в режиме гладкого тетануса, увеличивая тем самым свою силу по сравнению с одиночными сокращениями в 2-3 раза. В реальных условиях мышечной деятельности человека большая часть ДЕ активируется в диапазоне от 0 до 50% МПС. Лишь около 10% ДЕ вовлекаются с дальнейшим возрастанием силы сокращения. Следовательно, при увеличении силы сокращения более 50% от максимальной - основное значение, а в диапазоне сил от 75 до 100% МПС - даже исключительное, принадлежит росту частоты импульсации двигательных нейронов.

3. Синхронизация  активности различных ДЕ во времени. При сокращении мышцы всегда активируется множество составляющих ее ДЕ. Суммарный механический эффект при этом зависит от того, как связаны во времени импульсы, посылаемые разными мотонейронами к своим мышечным волокнам. При небольших напряжениях большинство ДЕ работают несинхронно. Совпадение во времени импульсов мотонейронов отдельных ДЕ называется синхронизацией.

Чем большее  количество ДЕ работает синхронно, тем  большую силу развивает мышца.

Синхронизация активности ДЕ играет важную роль в начале любого сокращения и при необходимости выполнения мощных, быстрых сокращений (прыжки, метания и т.п.). Чем больше совпадают периоды сокращения разных ДЕ, тем с большей скоростью нарастает напряжения всей мышцы и тем большей величины достигает амплитуда ее сокращения. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Функциональные особенности  гладких мышц 

Гладкие мышцы находятся в стенках  внутренних органов и кровеносных  сосудов. Регуляция их тонуса и сократительной активности осуществляется эфферентными волокнами симпатической и парасимпатической нервной системы, а также местными гуморальными и физическими воздействиями.

Сократительный  аппарат гладких мышц, как и  скелетных, состоит из толстых миозиновых и тонких актиновых нитей. Вследствие их нерегулярного распределения клетки гладких мышц не имеют характерной для скелетной и сердечной мышцы поперечной исчерченности. Гладкомышечные клетки имеют веретенообразную форму, длину 50-400 мкм и толщину 2-10 мкм. Они отделены друг от друга узкими щелями (60-150 нм). Возбуждение электротонически распространяется по мышце от клетки к клетке через особые плотные контакты (нексусы) между плазматическими мембранами соседних клеток.

Волокна гладких мышц сокращаются в результате относительного скольжения миозиновых и актиновых нитей, но скорость их сокращения и скорость расщепления АТФ в 100-1000 раз меньше, чем в скелетных мышцах. Поэтому гладкие мышцы хорошо приспособлены к длительному тоническому сокращению без развития утомления.

Гладкие мышцы, обладающие спонтанной активностью, способны сокращаться и при отсутствии прямых возбуждающих нервных и гуморальных воздействий (например, ритмические сокращения гладких мышц кишечника).

Спонтанная  активность гладкомышечных клеток связана  и с их растяжением, вызывающим деполяризацию  мембраны мышечного волокна, возникновение серии распространяющихся потенциалов действия, с последующим сокращением клетки.

Гладкие мышцы, не обладающие спонтанной активностью  сокращаются под влиянием импульсов  вегетативной нервной системы. Так, в отличие от мышц кишечника, мышечные клетки артерий, семенных протоков и радужки обладают слабой спонтанной активностью, или вообще не проявляют ее. Отдельные нервные импульсы не способны вызвать пороговую деполяризацию таких клеток и их сокращение. Потенциал действия волокна с последующим сокращением возникает лишь при поступлении к нему серии импульсов с частотой 1 имп/с и выше. В гладких мышцах, не обладающих спонтанной активностью возбуждение также передается от одной клетки к последующим через плотные контакты их мембран (нексусы).

Подобно скелетной и сердечной мышцам гладкие мышцы расслабляются, если концентрация ионов кальция снижается  ниже 10-8 моль/л. Однако в связи со слаборазвитым саркоплазматическим ретикулумом и медленным переносом ионов кальция через мембрану клетки, расслабление происходит гораздо медленнее, чем в случае поперечно-полосатых волокон скелетных мышц. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Заключение 

Перемещение тела в пространстве, поддержание  определенной позы, работа сердца и  сосудов и пищеварительного тракта у человека и позвоночных животных осуществляются мышцами двух основных типов: поперечнополосатыми (скелетной, сердечной) и гладкими, которые отличаются друг от друга клеточной и тканевой организацией, иннервацией и в определенной степени механизмами функционирования. В то же время в молекулярных механизмах мышечного сокращения между этими типами мышц есть много общего.

Мышцы – органы тела животных и человека, за счет сокращения и рас-слабления которых происходят все движения тела и внутренних органов.

Мышечная  ткань состоит из мышечных клеток, которым в наибольшей степени  присуще свойство сократимости. Издавна  эти клетки называют мы-шечными волокнами; данный термин указывает лишь на то, что мышечные клетки имеют вытянутую форму. Сократимость мышечных волокон обеспечи-вается аппаратом, образованным сократительными белками (актином и миози-ном), взаимодействие которых, протекающее с использованием энергии (АТФ), приводит к сокращению клеток (укорочению). Вслед за сокращением наступает расслабление, и тогда они возвращаются к своей исходной длине. Благодаря такому свойству клеток мышечной ткани достигается все многообразие двигательных функций организма и протекающих в нем механических процессов.  
 
 
 
 
 
 

Список  использованной литературы 

  1. Агаджанян Н.А. Основы физиологии человека: Учебник  для студентов вузов- СПБ. Проспект 2006
  2. Белоцерковский З.Б., Карпман В.Л., Кириллов А.А. Исследование физической работоспособности с помощью специфических нагрузок 2007.
  3. Зимкин Н.В., Эголинский А.Я. О физиологических основах развития выносливости //Теория и практика физической культуры. 2008 №1.

4. Миловзорова М.С. Анатомия и физиология человека. – М.: Юнити, 2003

5. Наточин Ю.В. Физиология и медицина. – М.: АСТ, 2006.

6. Судаков К.В. Физиология. Основы и функциональные системы. Курс лекций – Тверь : Печать 2006                                                                                                7. Ткаченко Б.И. Основы физиологии человека. Учебник для вузов. В 2-х томах. – М.: Дека, 2005                                                                                                                                                                                                                 8. Физиология человека. В 3-х томах. Учебник/ Под ред. Р.Шмидта, Г.Тевса. – СПб.: Питер, 2005                                                                                                            9. Физиология человека в схемах и таблицах./ Под ред. В.Б.Брина. –   М.: Спектр, 2008.                                                                                                                       10. Физиология человека. / Под ред. В.М.Покровского, Г.Ф.Коротько.- М.: Медицина, 2007. 
11. Физиология человека. / Под ред. Г.И.Косицкого.- М.: Медицина, 2002                                                                                                                                                12. Физиология человека: Учебник (курс лекций)/ Под редакцией Н.А.         Агаджаняна и В.И. Циркина. – СПб.: Сотис, 2010. Новое издание №1 
                                                                                                                                           

Информация о работе Функциональные особенности гладких мышц