Автор работы: Пользователь скрыл имя, 21 Ноября 2011 в 16:47, реферат
Оптика - раздел физики, в котором изучаются оптическое излучение (свет), его распространение и явления, наблюдаемые при взаимодействии света с веществом, - относится к числу наиболее старых и хорошо освоенных областей науки. Примерно до середины XX столетия казалось, что оптика как наука закончила развитие. Однако в последние десятилетия в этой области физики произошли революционные изменения, связанные как с открытием новых закономерностей (принципы квантового усиления, лазеры), так и с развитием идей, основанных на классических и хорошо проверенных представлениях. Здесь, прежде всего, имеется в виду голография, которая значительно расширяет область практического использования волновых явлений и дает толчок теоретическим исследованиям.
Содержание
Введение
1. Суть явления голографии
2. Голографирование. Восстановление изображения предмета
3. Голограммы. Общие сведения
4. Некоторые виды голограмм
1. Мультикомплексные голограммы
2. Пространственное мультиплексирование
3. Составные изображения
4. Голограммы, записанные с помощью сканирующего источника света
5. Сканирующий опорный пучок
6. Цветные голограммы
7. Голограммы, восстанавливаемые в белом свете
5. Трехмерная фотография
6. Применение голографии в технологии и оптотехнике
7. Неоптическая голография
1. Сканирование звукового поля
2. Фотография
3. Деформация поверхности жидкости под действием звукового давления
4. Объемная голограмма
8. Виды применения голографии
1. Голографическое хранение данных
2. Изобразительная голография
3. Криминалистическая голография
4. Голографическая интерферометрия
9. Голографические диски HVD
1. Общие сведения о голографических дисках
2. Технология хранения информации
3. Запись и считывание голограммы оптического диска
4. Отличие метода поляризованной коллинеарной голографии (Optware) от классической технологии (Inphase Technologies)
5. Компоненты и материалы (Optware)
Заключение
Литература
Объем необходимых вычислений для получения значений напряжений очень мал, и они могут быть выполнены оператором сразу же при получении и наблюдении интерференционной картины. При этом, в отличие от тензометрирования, где измерения выполняются для отдельных точек, данный метод регистрирует линии уровня перемещений по всей области поверхности тела в окрестности зондирующей лунки, что позволяет визуально определять направления главных напряжений и делать качественные выводы о свойствах напряжений еще до подсчета числовых значений соответствующих величин.
Тем самым были созданы основы метода для массовой лабораторной работы по измерению остаточных напряжений. Начались исследования остаточных напряжений в сварных соединениях и отработка режимов сварки стали, алюминия, титана, магния. Вначале работа велась с образцами на лабораторном стенде. Новая методика оказалась эффективной при отработке технологии электронно-лучевой сварки и локальной термической обработки образцов разного сечения (плоских, тавровых, цилиндрических, сферических) из высокопрочных сталей разных марок и титановых сплавов.
По мере накопления опыта был сделан следующий важный шаг — создан переносной прибор, который работал не только в лаборатории, но и в цеху и на открытом воздухе. С этим прибором в заводских условиях выполнена комплексная программа по отработке режимов сварки и локальной термической обработки титановых крупногабаритных сосудов высокого давления объемом 1000 л, рассчитанных на рабочее давление 300 атм. Разработка новой технологии шла при непрерывном контроле остаточных напряжений. В итоге технология изготовления сосудов была значительно изменена, удешевлена, а качество изделия повышено. Это исследование проводилось в цехах Авиационного научно-технического комплекса им. А.Н. Туполева. С этим же прибором были сделаны первые выезды на строящуюся Курскую АЭС и Астраханский газоперерабатываюший завод, где измерялись сварочные напряжения в реальных конструкциях в трудных климатических условиях. В сотрудничестве с Конструкторским бюро им. С.А. Лавочкина была усовершенствована технология сварки и режимов термической обработки сварных соединений ряда алюминиевых сплавов, а также выполнена экспертная работа по установлению причин саморазрушения корпуса одного из космических аппаратов во время хранения.
На
основе проведенных исследований создано
несколько видов портативных
голографических систем для измерения
напряжений под общим названием
ЛИМОН — лазерно-
На
основе проведенных исследований создано
несколько видов портативных
голографических систем для измерения
напряжений под общим названием
ЛИМОН — лазерно-
На смену уходящим поколениям оптических дисков (CD, DVD, BR(HD)-DVD, FVD, EVD, UDO) пришло новое поколение — HVD (Holographic Versatile Disk) — многоцелевые голографические диски, кардинально отличающиеся от всех вышеперечисленных способом оптического хранения информации.
Существуют две конкурирующие технологии голографической записи от фирм Optware (Япония) и Inphase Techologies (США). За Optware стоят CMC Magnetics, Fuji Photo Film, Nippon Paint, Pulstec Industrial Toagosei, Toshiba, Panasonic, Intel Capital и Sony, а за Inphase Techologies — Hitachi-Maxell, Bayer MaterialScience и Imation.
Характеристики HVD-дисков и приводов, текущие и планируемые (в процессе совершенствования технологий могут меняться):
Inphase-Techologies:
Optware:
И тот и другой тип оптическтих дисков планируется размещать в защитный картридж. Таким образом, внешне они будут напоминать пятидюймовые дискеты.
Диски названы голографическими потому, что страницы бинарных данных записываются на них способом, схожим с записью голограмм. Причем, для хранения данных применяются не плоские голограммы, расположенные на поверхности фоточувствительного слоя оптического диска, а объемные, занимающие некоторую толщину фоточувствительного слоя диска. Заметьте, что речь не идёт о послойном хранении информации! Вся информация записана всего лишь в одном фоточувствительном слое диска!
Записанные на диск страницы не являются голограммами в полном смысле этого слова. На диске фиксируется информация не рассеянного светового фронта, излучаемого во все стороны изображением страницы данных, а уже плоская, необъёмная световая информация, сфокусированная линзой. Тем не менее, запись сфокусированной страницы происходит, как и запись голограмм, за счёт интерференции, что даёт право называть записанную информацию, скажем, объёмной голограммой плоского светового фронта.
Почему для хранения информации стали применяться объемные голограммы? Не проще ли было осуществить обычную оптическую запись, расположив данные на нескольких слоях оптического диска? Оказывается у объёмной голограммы есть важное преимущество — способность к мультиплексированию (которого, кстати, нет у обычных плоскостных голограмм). Мультиплексирование — это способность хранить несколько разных слепков данных практически в одном и том же объёме записывающего вещества.
Мультиплексирование достигается за счет изменения угла наклона прожигаемых поперёк объёмного фотослоя плоскостей, являющихся элементарными кирпичиками записываемой информации (т.н. брэгговских плоскостей). Этот способ позволяет достигать чрезвычайно высокой плотности записи, не увеличивая до нереальных величин точность считывающего и записывающего устройств. Для записи или считывания той или иной страницы данных достаточно изменить лишь угол подсветки голограммы.
Кроме мультиплексирования за счет изменения угла опорного луча существуют еще два теоретически простых способа:
Однако все вышеописанные способы требуют сложных оптических систем и толстых, толщиной в несколько миллиметров, носителей. Это затрудняет их коммерческое применение, по крайней мере, в сфере обработки информации. Поэтому были разработаны ещё три метода мультиплексирования:
Они основаны на использовании изменения положения носителя относительно световых пучков. При этом сдвиговое и апертурное мультиплексирование используют сферический опорный пучок, а корреляционное — пучок еще более сложной формы.
С целью еще более высокого уплотнения данных помимо мультиплексирования страниц применяется наложение книг. Суть наложения книг в том, что мультиплексированные массивы страниц (книги) записываются внахлёст друг на друга, как показано на рисунке ниже. Естественно, что с увеличением количества записанных страниц, и плотности наложения книг общая прозрачность голограммы падает. Поэтому степень плотности ограничивается способностью аппаратуры различать информацию на каждой отдельной странице.
Еще одним плюсом описываемой технологии является возможность удерживать точность оборудования на приемлемом для массового изготовления уровне. Страницы информации после их формирования уменьшаются чисто оптическим способом — всего лишь с помощью линзы, а при восстановлении подобной же линзой увеличиваются до размера считывающего устройства.
Кроме того, голографический способ хранения позволяет значительно повысить скорость доступа к ней, поскольку обращение для чтения или записи происходит единовременно ко всей странице данных, а каждая такая страница может содержать до миллиона бит и более.
Запись бинарных данных в голограмму происходит следующим образом.
Если
мы представим пересекающиеся световые
волны в трехмерном пространстве,
то поймем, что двигаясь, они образовывают
трёхмерные стоячие волны, которые
прожигают брэгговские
Таким образом, считывание данных из голограммы происходит так:
На одной из выставок Optware показала следующие сравнительные схемы, подчеркнув компактность своего метода:
Однако на деле поляризованная коллинеарная схема выглядит несколько иначе. На сайте самой Optware опубликована гораздо более сложная схема, тогда как эскиз привода с сайта Inphase Technologies выглядит значительно проще:
Всё это говорит об очередной войне стандартов. Схемы привода и диска от Inphase Technologies объективно выглядят проще для понимания. На первый взгляд, Optware перемудрила со своим методом. Но он даёт определённые плюсы.
Например, за счёт того, что диск не просвечивается насквозь, имеется возможность в перспективе делать двухстороннее нанесение информации (двусторонний диск), что в 2 раза повысит его ёмкость. Красный лазер, отвечающий за работу сервопривода (фокусировку) может использоваться для чтения обычных дисков, то есть сохраняется обратная совместимость устройства с прежними стандартами CD и DVD.